深度学习的奋斗者
shouhou6668889,做过多个领域的机器学习与深度学习科研项目及落地项目,在优化算法领域、风速/光伏/股票等时序信号预测领域,农业病虫害图片识别领域技术均很熟练。所售代码,均有售后,可私信
展开
-
以CWRU(凯斯西储大学轴承数据)为数据源,网络架构是lenet-5改进版本,实现故障诊断(每行代码都有中文注释).重点:融合DE,FE数据实现诊断。
1.针对自己具体的数据文件格式读取数据 1.1.所以首先先介绍一下我电脑里面的这份数据集 数据文件夹名字:12K 文件夹里面有四个小文件夹:如图所示:也就是先简单分了四类:正常,内圈故障,外圈故障,滚动体故障当然也有其它的故障分类模式:比如再考虑到内外圈滚动体尺寸和伤痕位置,可以分为9类故障加正常模式,一共10类。1.2以内圈故障为例子:Inner文件里面存放的数据文件有12个(四种工况,每种工况有三种尺寸)所以外圈故障和滚动体也是分别有12个子文件,正常文...原创 2021-07-07 17:00:23 · 2735 阅读 · 2 评论 -
pytorch搭建卷积网络(以minist数据集为例)以及如何查看输出每层的权重和特征图
# -*- coding: utf-8 -*-"""Created on Sun Jul 18 15:19:41 2021@author: pony"""import torchimport torch.nn as nnimport torch.optim as optimimport torch.nn.functional as Fimport torchvision.datasets as dsetsimport torchvision.transforms as transf.原创 2021-07-18 19:19:49 · 2154 阅读 · 1 评论 -
如何实现T-SNE可视化(python)
1.结果2.代码# -*- coding: utf-8 -*-"""Created on Sun Sep 19 09:33:20 2021@author: pony"""import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsfrom sklearn.manifold import TSNEclass FeatureVisualize(object): '''..原创 2021-09-19 09:42:19 · 2991 阅读 · 0 评论 -
利用SVM小样本机械故障诊断(MATLAB代码)
1.结果展示原创 2021-09-05 16:13:36 · 3243 阅读 · 1 评论 -
仿真信号生成基础部分
1.生成不同频率的正弦累加周期信号function [ output_args ] = example2_9( input_args )% Detailed explanation goes hereclc;clear;fs=256;f1=25;f2=100;t=0:1/fs:1-1/fs;y=2*sin(2*pi*f1.*t)+sin(2*pi*f2.*t);tfrstft(y');end2.不同调频累加部分信号生成function [ output_args原创 2021-08-30 18:51:29 · 580 阅读 · 0 评论 -
滚动轴承信号仿真阶次跟踪法分析
%~~~~~~~~~~~~~导入数据~~~~~~~~~~~~~%clcclearFs=71680;N=Fs*5;t=(0:N-1)/Fs;Adc = 1; %直流分量幅度% S=sin(2*pi*t.^2- pi/6)+sin(4*pi*t.^2- pi/6)+sin(8*pi*t.^2- pi/6)% S2=Adc+ sin(2*pi* t.^2- pi/6);%参考轴的转速为n(t)=60t r/minS=sin(2*pi*t.^2)+sin(4*pi*t.^2)+sin(8*pi.原创 2021-08-25 14:23:18 · 1713 阅读 · 0 评论 -
对辛辛那提原始数据集(ims)数据划分正常,内圈故障,滚动体故障,外圈故障(python代码),可作为自己故障诊断模型实验的另一个数据集(因为CWRU普遍而言,准确度和被使用频率已经极高)
1.IMS数据集一般用来做设备可用寿命预测,但是,在故障分类领域,越来越多的人也在使用 原始数据下载官网(https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#bearing)2.说明一下正常样本,内圈故障样本,外圈故障样本,滚动体故障样本的取文件范围: 在提取时,包含原始数据的压缩文件提供了三个文件夹:1st_test、2nd_test和3rd_test以及一个文档文件。在3...原创 2021-08-14 18:36:43 · 4726 阅读 · 3 评论 -
余弦退火学习率衰减策略
import tensorflow as tfimport mathimport matplotlib.pyplot as pltclass CosineWarmup(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, warmup_slope, warmup_steps, cosine_steps): super().__init__() self.warmup...原创 2021-08-09 14:46:44 · 1639 阅读 · 0 评论 -
融合两通道振动信号,分别利用随机深林,卷积结合残差网络进行滚动轴承故障诊断实验。(代码有详细注释)
1.数据集介绍:在data文件夹里有两个子文件,在第一个子文件夹(12k Drive End Bearing Fault Data)里有分好类的三个文件夹:外圈故障,内圈故障,滚动体故障。在第二个文件(Normal Baseline Data)里存放正常数据(下载链接:https://download.csdn.net/download/qq_40840797/20818121?spm=1001.2014.3001.5501)或者评论区留邮箱,我发你。2.原始信号展示图及...原创 2021-08-07 10:09:10 · 325 阅读 · 1 评论 -
如何从故障轴承振动信号序列判断故障出现时间(python)
1.数据集介绍: 1.1. 这次使用的是西安交大转子数据集(百度网盘:Baidu Netdisk: https://pan.baidu.com/s/1OaY82azTXHBwjiCjA_jRcw) 1.2.下载下来如图所示:本次所用是第一个未被压缩文件(XJTU-SY_Bearing_Datasets) 1.3.所用文件夹:XJTU-SY_Bearing_Datasets的内部文件2.代码实现 2.1.导入库import pandas as pd...原创 2021-08-03 16:43:25 · 1995 阅读 · 0 评论 -
实现滚动轴承仿真信号
1.仿真公式设置:根据文献:包文杰. 加权谱峭度故障诊断方法研究与应用[D].上海交通大学,2019.中第3章节3.1-3.4的所列公式(包含:周期性冲击信号仿真,随机干扰冲击信号仿真,调制干扰信号仿真,故障引起的指数衰减正弦函数)2.参数设置3.代码实现%% 信号参数设置clear;fs = 10e3; % 采样频率fn = 1125; % 周期性冲击信号共振频率fn2 = 2250; ..原创 2021-07-14 15:29:30 · 5240 阅读 · 0 评论