余弦退火学习率衰减策略

import tensorflow as tf
import math
import matplotlib.pyplot as plt

class CosineWarmup(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, warmup_slope, warmup_steps, cosine_steps):
        super().__init__()
        self.warmup_slope = tf.cast(warmup_slope, dtype=tf.float32)
        self.warmup_steps = tf.cast(warmup_steps, dtype=tf.float32)
        self.cosine_steps = tf.cast(cosine_steps, dtype=tf.float32)
        self.steps = self.warmup_steps + self.cosine_steps

    def __call__(self, step):
        if step%self.steps < self.warmup_steps:
            return self.warmup_slope * (step%s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习的奋斗者

你的鼓励是我努力的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值