人工蜂群算法
人工蜂群算法(Artificial Bee Colony Optimization,ABC)是一种基于蜜蜂觅食行为的优化算法,由土耳其学者Karaboga于2005年提出,算法模拟蜜蜂的采蜜行为对优化问题进行求解。
算法原理
ABC算法的核心思想是将优化问题的解空间视作蜜源,蜜蜂作为搜索代理在解空间中进行探索。在算法的每一轮迭代中,蜜蜂根据当前蜜源的质量和周围蜜源的信息,选择性地进行勘探和开发,从而逐步优化搜索空间。蜜源的位置代表了优化问题的可能解决方案,蜜源的花蜜量对应于相关解决方案的优劣,ABC算法与优化问题的对应关系如下表所示。
ABC | 优化问题 |
---|---|
蜜源 | 可行解: X i = ( x i 1 , x i 2 , … , x i D ) X_i=(x_{i1},x_{i2},\dots,x_{iD}) Xi=(xi1,xi2,…,xiD) |
花蜜量 | 适应度 |
算法超参数
ABC算法的超参数包括雇佣蜂比例和蜜源保留次数阈值等,参数影响着蜜蜂在搜索空间中的行为和搜索效率。
- e m p l o y e d _ r a t e employed\_rate employed_rate:雇佣蜂比例;
- l i m i t limit limit:蜜源保留次数的阈值;
- NP:种群大小;
- Gmax:最大迭代数。
寻优公式
人工蜂群由雇佣蜂(employed bees)、围观蜂(onlookers)和侦察蜂(scouts)三类蜜蜂组成。在标准的ABC算法中,蜂群的前半部分由受雇的人工蜜蜂组成,后半部分为观察蜂。每个蜜源只有一只雇佣蜂,受雇蜜蜂的数量等于蜂巢周围食物源的数量。被雇用的蜜蜂的食物源已被蜜蜂吃光,它就会转变为侦察蜂探索新的蜜源。ABC通过重复执行雇佣蜂、观察蜂和侦察蜂三个阶段来寻找问题的最优解。
- 雇佣蜂阶段,雇佣蜂在现有蜜源的位置开发新的蜜源。
v i j t = x i j t + ϕ i j t ( x i j t − x k j t ) (1) v_{ij}^t=x_{ij}^t + \phi_{ij}^t(x_{ij}^t - x_{kj}^t) \tag{1} vijt=xijt+ϕijt(xij