题目链接:https://codeforc.es/contest/1140/problem/F
思路:时间线段树部分挺裸的,一个点能把行和列连接在一起,那么答案就是每个联通快里面行的个数乘上列的个数,把行和列看成点的思想好像挺常见的,网络流建图什么的也可以经常可以看见这种思想,纪录一下
#pragma GCC optimize(3)
#include <unordered_map>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <cmath>
#include <cctype>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <sstream>
#include <iomanip>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll inff = 0x3f3f3f3f3f3f3f3f;
#define FOR(i,a,b) for(int i(a);i<=(b);++i)
#define FOL(i,a,b) for(int i(a);i>=(b);--i)
#define REW(a,b) memset(a,b,sizeof(a))
#define inf int(0x3f3f3f3f)
#define si(a) scanf("%d",&a)
#define sl(a) scanf("%lld",&a)
#define sd(a) scanf("%lf",&a)
#define ss(a) scanf("%s",a)
#define mod ll(1000)
#define pb push_back
#define eps 1e-8
#define lc d<<1
#define rc d<<1|1
#define Pll pair<ll,ll>
#define P pair<int,int>
#define pi acos(-1)
int fa[600008],sx[600008],sy[600008],n;
ll ans=0;
int fid(int x) {return (fa[x]^x)?fid(fa[x]):x;}
unordered_map<int,int>mp[300008];
struct ass{
int x,y;}a[300008];
struct as{
int l,r;
vector<P>g;
}tr[300008<<2];
void build(int d,int l,int r)
{
tr[d].l=l,tr[d].r=r;
if(l==r) return;
int mid=(l+r)>>1;
build(lc,l,mid);
build(rc,mid+1,r);
}
void add(int d,int l,int r,P pos)
{
if(tr[d].l==l&&tr[d].r==r) {tr[d].g.pb(pos);return;}
int mid=(tr[d].l+tr[d].r)>>1;
if(mid>=r) add(lc,l,r,pos);
else if(l>mid) add(rc,l,r,pos);
else add(lc,l,mid,pos),add(rc,mid+1,r,pos);
}
void query(int d)
{
vector<int>st;
for(auto it:tr[d].g)
{
int fx=fid(it.first),fy=fid(it.second);
if(fx==fy) continue;
if(sx[fx]+sy[fx]<sx[fy]+sy[fy]) swap(fx,fy);
ans-=(1ll*sx[fx]*sy[fx]+1ll*sy[fy]*sx[fy]);
fa[fy]=fx,sx[fx]+=sx[fy];sy[fx]+=sy[fy];
ans+=1ll*sx[fx]*sy[fx];
st.pb(fy);
}
if(tr[d].l==tr[d].r) printf("%lld ",ans);
else query(lc),query(rc);
for(int i=st.size()-1;i>=0;i--)
{
ans-=1ll*sx[fa[st[i]]]*sy[fa[st[i]]];
sx[fa[st[i]]]-=sx[st[i]],sy[fa[st[i]]]-=sy[st[i]];
ans+=(1ll*sx[fa[st[i]]]*sy[fa[st[i]]]+1ll*sx[st[i]]*sy[st[i]]);
fa[st[i]]=st[i];
}
st.clear();
}
int main()
{
cin.tie(0);
cout.tie(0);
cin>>n;
build(1,1,n);
FOR(i,1,300000) fa[i]=i,sx[i]=1;
FOR(i,300001,600000) fa[i]=i,sy[i]=1;
FOR(i,1,n)
{
si(a[i].x),si(a[i].y);
if(mp[a[i].x][a[i].y]) {add(1,mp[a[i].x][a[i].y],i-1,P(a[i].x,a[i].y+300000));mp[a[i].x][a[i].y]=0;continue;}
mp[a[i].x][a[i].y]=i;
}
FOR(i,1,n) if(mp[a[i].x][a[i].y]) add(1,mp[a[i].x][a[i].y],n,P(a[i].x,a[i].y+300000));
query(1);puts("");
return 0;
}