逆元的三种求法 (费马小定理,扩展欧几里得,递推求阶乘逆元)

45 篇文章 0 订阅
44 篇文章 0 订阅

逆元的三种求法

费马小定理,扩展欧几里得,递推求阶乘逆元

逆元

对于一个实数 A A A 如果存在一个 x x x 使得 A x = 1 Ax = 1 Ax=1,我们就把这个 x x x 叫做 A A A 的逆元,记做 x = A − 1 x = A^{-1} x=A1
在一般数学中,我们所说的逆元就是倒数

但是在数论中,如果一个数字 A A A 存在一个对 p p p 的逆元 x x x,就可以写成 A x ≡ 1   m o d   p Ax≡1\ mod\ p Ax1 mod p 的形式(此处 p p p A A A 互质,若不互质,则不存在逆元)。

逆元的作用

我们知道 取余 的性质:

  1. ( a − b ) % c = ( a % c − b % c ) % c (a - b)\%c = (a\%c - b\%c)\%c (ab)%c=(a%cb%c)%c
  2. ( a + b ) % c = ( a % c + b % c ) % c (a + b)\%c = (a\%c+b\%c)\%c (a+b)%c=(a%c+b%c)%c
  3. ( a × b ) % c = ( a % c × b % c ) % c (a\times b)\%c=(a\%c\times b\%c)\%c (a×b)%c=(a%c×b%c)%c

对于基本的四种运算而言,加减乘都符合“分配率”,唯独除法不满足。

( a ÷ b ) % c = ( a % c ÷ b % c ) % c (a\div b)\%c=(a\%c\div b\%c)\%c (a÷b)%c=(a%c÷b%c)%c

上面这种运算是错误的!

如果要实现这种运算,就要把除法转化为乘法,假设 b − 1 b^{-1} b1 b b b 关于 c c c 的逆元。
( a ÷ b ) % c (a\div b)\%c (a÷b)%c 可以转化为 ( a × b − 1 ) % c = ( a % c × b − 1 % c ) % c (a\times b^{-1})\%c=(a\%c\times b^{-1}\%c)\%c (a×b1)%c=(a%c×b1%c)%c

逆元求法

费马小定理

费马小定理:假设 p p p 是一个质数,且 g c d ( a , p ) = 1 gcd(a, p) = 1 gcd(a,p)=1,那么 a p − 1 ≡ 1   m o d   p a^{p-1}≡1\ mod\ p ap11 mod p
我们也可以的得到一个费马小定理的特例:假设 a a a 是一个整数,且 g c d ( a , p ) = 1 gcd(a, p) = 1 gcd(a,p)=1,那么 a p − 1 ≡ 1   m o d   p a^{p-1}≡1\ mod\ p ap11 mod p

根据费马小定理 a p − 1 ≡ 1   m o d   p a^{p-1}≡1\ mod\ p ap11 mod p ,可以发现 a p − 2 × a ≡ 1   m o d   p a^{p-2}\times a≡1\ mod\ p ap2×a1 mod p 也成立。
是不是很像上面说到的逆元的形式: A x ≡ 1   m o d   p Ax≡1\ mod\ p Ax1 mod p x x x A A A 关于 p p p 的逆元。
那根据费马小定理也可得知 a p − 2 a^{p-2} ap2 a a a 关于 p p p 的逆元。
所以求 a a a 的逆元,就直接用快速幂求 a p − 2 a^{p-2} ap2 就可以了。

LL power(LL a, int x) {
	LL ans = 1;
	while(x) {
		if(x&1) ans = (ans * a) %mod;
		a = (a * a) %mod;
		x >>= 1;
	}
	return ans;
} 

LL inv(LL a) {
	return power(a, mod - 2);
}
扩展欧几里得

扩展欧几里得: a x + b y = g c d ( a , b ) ax +by=gcd(a,b) ax+by=gcd(a,b) 的解一定存在。
当我们要求 a a a 关于 p p p 的逆元时,若逆元存在,则 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1。假设逆元为 x x x,即: a x ≡ 1   m o d   p ax ≡ 1\ mod\ p ax1 mod p
我们可以展开一下变成 a x = 1 + p k ax = 1 + pk ax=1+pk,由于 k k k 可正可负。
所以我们可以得到 a x + p k = 1 ax + pk=1 ax+pk=1,其实就是 a x + p k = g c d ( a , p ) ax + pk= gcd(a,p) ax+pk=gcd(a,p)
所以我们用扩展欧几里得求出一个最小的 x x x 就是 a a a 关于 p p p 的一个逆元啦。


我们来试着解这个欧几里得吧!
现在已经有了 a x + b y = g c d ( a , b ) ax + by=gcd(a,b) ax+by=gcd(a,b) 了。我们想试着求出一个特解 x x x

根据欧几里得算法我们可以知道 g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b)=gcd(b,a\%b) gcd(a,b)=gcd(b,a%b)

而且我们可以看出 b x + ( a % b ) y = g c d ( b , a % b ) bx+(a\%b)y=gcd(b,a\%b) bx+(a%b)y=gcd(b,a%b)
由此我们可得:(由于两边的 x x x y y y 值不同,我们用 x ′ x' x y ′ y' y 进行区分)
b x ′ + ( a % b ) y ′   =   a x + b y bx'+(a\%b)y'\ =\ ax + by bx+(a%b)y = ax+by
我们想要把式子化简一下,可以从 a % b a\%b a%b 入手,即 a % b   =   a − ⌊ a b ⌋ × b a\%b\ =\ a-\lfloor\frac{a}{b}\rfloor \times b a%b = aba×b
所以我们可以化简得到: a x + b y   =   b x ′ + ( a − ⌊ a b ⌋ b ) y ′ ax + by\ =\ bx'+(a-\lfloor\frac{a}{b}\rfloor b)y' ax+by = bx+(abab)y
移项:
a x + b y = a y ′ + b ( x ′ − ⌊ a b ⌋ y ′ ) ax + by=ay'+b(x'-\lfloor\frac{a}{b}\rfloor y') ax+by=ay+b(xbay)
系数相等,所以我们可以解得
{ x = y ′ y = ( x ′ − ⌊ a b ⌋ y ′ ) \begin{cases} x=y'\\ y=(x'-\lfloor\frac{a}{b}\rfloor y')\\ \end{cases} {x=yy=(xbay)
根据欧几里得算法,我们一直递归下去,总会到要一个最终位置的 a % b = 0 a\%b=0 a%b=0
所以式子变成了 a x = g c d ( a , b ) ax=gcd(a,b) ax=gcd(a,b)。此时我们取一个特解 x = 1 x=1 x=1 y = 0 y=0 y=0。然后往回推,就可以得到一开始的那个 x x x
此时解出来的 x x x 就是 a a a 关于 p p p 的一个逆元。

void exgcd(LL a, LL b, LL &x, LL &y) {
	if (b == 0) {
		x = 1;y = 0;
	} else {
		exgcd(b, a%b, y, x);
		y -= (a/b) * x;
	}
}

递推求阶乘逆元。

我们经常会用到阶乘的逆元,我们可以考虑用费马小定理先求出最大那个阶乘的逆元,然后再往回推,直接看代码再解释。

void init() {
	fact[0] = 1;
	for (int i = 1; i < maxn; i++) {
		fact[i] = fact[i - 1] * i %mod;
	}
	inv[maxn - 1] = power(fact[maxn - 1], mod - 2);
	for (int i = maxn - 2; i >= 0; i--) {
		inv[i] = inv[i + 1] * (i + 1) %mod;
	}
}

我们可以假设把 n ! n! n! 的逆元表示为 [ n ! ] − 1 [n!]^{-1} [n!]1
我们要求 ( n − 1 ) ! (n-1)! (n1)! 的逆元,我们可以考虑给 ( n − 1 ) ! (n-1)! (n1)! 乘上一个 n n n 把他变为 n ! n! n!
( n − 1 ) ! × n [ n ! ] − 1 ≡ 1   m o d   p (n-1)!\times n[n!]^{-1}≡1\ mod\ p (n1)!×n[n!]11 mod p
因此 n [ n ! ] − 1 n[n!]^{-1} n[n!]1 ( n − 1 ) ! (n-1)! (n1)! 关于 p p p 的一个逆元。

同伦群和同伦类是拓扑学中的重要概念,用于描述拓扑空间之间的变形关系以及它们之间的不变量。下面是它们的基本概念、定义和性质: 1. 同伦群的基本概念:设X是一个拓扑空间,x0∈X是一个固定点。对于X中任意两个点x和y,如果它们可以用一条连续的路径相连且路径两端都经过x0,则称x和y是关于x0的同伦等价的。同伦等价关系是一个等价关系,可以将X中的所有点划分为若干个同伦类。同伦群就是这些同伦类之间的代数结构,它是一个群,群运算是同伦类的连接运算。 2. 同伦类的基本概念:设X和Y是两个拓扑空间,f和g是它们之间的两个连续映射,如果存在一个连续映射H: X×[0,1]→Y,满足H(x,0)=f(x)、H(x,1)=g(x)以及H(x0,t)=x0对任意t∈[0,1]成立,则称f和g是同伦的。同伦等价关系是一个等价关系,可以将所有连续映射的集合划分为若干个同伦类。同伦类是拓扑空间之间的不变量,它可以用来描述它们之间的变形关系。 3. 同伦群的性质:同伦群是拓扑空间的重要不变量,可以用来描述拓扑空间之间的同伦等价关系。同伦群具有以下性质: (1)同伦等价的空间具有相同的同伦群。 (2)同伦群是拓扑空间的拓扑不变量,即同伦等价的拓扑空间具有相同的同伦群。 (3)同伦群是一个代数结构,它具有群的所有性质,包括封闭性、结合律、单位元和逆元等。 4. 同伦类的性质:同伦类是拓扑空间之间的不变量,具有以下性质: (1)同伦等价的映射具有相同的同伦类。 (2)同伦类是拓扑空间之间的拓扑不变量,即同伦等价的拓扑空间具有相同的同伦类。 (3)同伦类可以用来刻画拓扑空间之间的连续映射关系,即同伦等价的映射之间存在连续映射的关系。 总之,同伦群和同伦类是拓扑学中的重要概念,它们可以用来描述拓扑空间之间的变形关系以及它们之间的不变量。在实际应用中,同伦群和同伦类可以用来研究曲面、纤维丛、材料力学等领域的问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值