一、目的
本次目的是实现GoogNet的部分模块,以及如何去解决梯度消失问题(ResNet)
二、编程
GoogleNet中Inception模块其一:
关于Inception模块的好处,看这篇文章:Inception 模块作用
我们将搭建这样的网络
输入层->
卷积层->池化层->rule->
inception->
卷积层->池化层->relu->
inception->
全连接层
数据集仍然使用Mnist
import torch.nn.functional as F
import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
# 准备数据集
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_data = datasets.MNIST(root='./dataset/mnist', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=0)
test_data = datasets.MNIST(root='./dataset/mnist', train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=True, num_workers=0)
class InceptionA(torch.nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch_pool = torch.nn.Conv2d(in_channels=in_channels, out_channels=24, kernel_size=1)
self.branch_conv1x1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=16, kernel_size=1)
self.branch_conv5x5_1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=16, kernel_size=1)
self.branch_conv5x5_2 = torch.nn.Conv2d(in_channels=16, out_channels=24, kernel_size=5, padding=2)
self.branch_conv3x3_1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=16, kernel_size=3, padding=1)
self.branch_conv3x3_2 = torch.nn.Conv2d(in_channels=16, out_channels=24, kernel_size=3, padding=1)
self.branch_conv3x3_3 = torch.nn.Conv2d(in_channels=24, out_channels=24, kernel_size=3, padding=1)
def forward(self, x):
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
branch_conv1x1 = self.branch_conv1x1(x)
branch_conv5x5 = self.branch_conv5x5_1(x)
branch_conv5x5 = self.branch_conv5x5_2(branch_conv5x5)
branch_conv3x3 = self.branch_conv3x3_1(x)
branch_conv3x3 = self.branch_conv3x3_2(branch_conv3x3)
branch_conv3x3 = self.branch_conv3x3_3(branch_conv3x3)
outputs = [branch_pool, branch_conv1x1, branch_conv3x3, branch_conv5x5]
outputs = torch.cat(outputs, dim=1)
return outputs
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(in_channels=88, out_channels=20, kernel_size=5)
self.incep1 = InceptionA(in_channels=10)
self.incep2 = InceptionA(in_channels=20)
self.mp = torch.nn.MaxPool2d(kernel_size=2)
self.fc = torch.nn.Linear(1408, 10)
def forward(self, x):
x_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.incep1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incep2(x)
x = x.view(x_size, -1)
x = self.fc(x)
return x
model = Net()
# 构建损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), momentum=0.5, lr=0.01)
# 训练
def train(epoch):
running_loss = 0.
for batch_idx, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print("[%d, %d], loss=%.3f" % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.
def test():
correct = 0
total = 0
with torch.no_grad():
for batch_idx, data in enumerate(test_loader, 0):
inputs, labels = data
total += inputs.size(0)
predicated = model(inputs)
_, predicated = torch.max(predicated, dim=1)
correct += (predicated == labels).sum().item()
print('accuracy on test set: %d %% ' % (100*correct/total))
if __name__ == "__main__":
for epoch in range(10):
train(epoch)
test()
当神经网络深度过高,就容易发生梯度消失的问题,我们接下来看一种能够解决这种问题的网络模块——ResNet中的ResidualBlock模块(残差结构):
对于残差网络有兴趣的小伙伴可以看这篇文章:resnet50网络结构图_ResNet——CNN经典网络模型详解(pytorch实现)
我们将要搭建这样的网络:
import torch
import torch.nn.functional as F
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import transforms
# 导入数据集
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_data = datasets.MNIST(root='./dataset/mnist', transform=transform, train=True, download=True)
train_loader = DataLoader(dataset=train_data, shuffle=True, batch_size=batch_size, num_workers=0)
test_data = datasets.MNIST(root='./dataset/mnist', transform=transform, train=False, download=True)
test_loader = DataLoader(dataset=test_data, shuffle=True, batch_size=batch_size, num_workers=0)
# 构建神经网络
class ResidualBlock(torch.nn.Module):
def __init__(self, in_channels):
super(ResidualBlock, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, padding=1)
def forward(self, x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x+y)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5)
self.conv2 = torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5)
self.mp = torch.nn.MaxPool2d(kernel_size=2)
self.rblock1 = ResidualBlock(16)
self.rblock2 = ResidualBlock(32)
self.fc = torch.nn.Linear(512, 10)
def forward(self, x):
x_size = x.size(0)
x = self.mp(F.relu(self.conv1(x)))
x = self.rblock1(x)
x = self.mp(F.relu(self.conv2(x)))
x = self.rblock2(x)
x = x.view(x_size, -1)
x = self.fc(x)
return x
model = Net()
# 构架损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), momentum=0.5, lr=0.1)
# 训练
def train(epoch):
running_loss = 0.
for batch_idx, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print("[%d %d],loss=%.3f" % (epoch+1, batch_idx+1, running_loss/300))
running_loss = 0.
def test():
total = 0
correct = 0
with torch.no_grad():
for batcg_idx, data in enumerate(test_loader, 0):
inputs, labels = data
total += inputs.size(0)
x_size = inputs.size(0)
predicted = model(inputs)
_, predicted = torch.max(predicted, dim=1)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100*correct/total))
if __name__ == "__main__":
for epoch in range(10):
train(epoch)
test()