华罗庚文集 数论卷Ⅱ 二、同余式(一)

以下整理自华罗庚文集数论卷Ⅱ(2010年版)

§1 定义

令m为一自然数,若a-b为m之倍数,则谓之“a,b对模m同余(congruent)”。以a≡b(mod m)表示之。

对任二整数a及b,常有a≡b(mod 1)。

 

§2 同余式之基本性质

定理一 (i)a≡a(mod m) (反身性);
           (ii)若a≡b(mod m),则b≡a(mod m)(对称性);
           (iii)若a≡b,b≡c(mod m),则a≡c(mod m)(传递性)。

由此三项性质可以分整数为若干类,同类之数皆同余,异类者皆不同余,此项之类,名为同余类。显然,如以m为模,有m个同余类:以m除余1之数为一类,余2之数为一类,等等。每类中各取一数为代表,此代表组名为一完全剩余系。

定理二    若a≡b,a1≡b1(mod m),则a+a1≡b+b1,a-a1≡b-b1(mod m),及a*a1≡b*b1(mod m)

定理二也可改述如次:任与二类A,B,其中各取一代表a及b,命a+b(或a-b,或ab)所代表之类为C。则C仅与A,B有关,而与其所取之代表无关。亦即A,B中各取一数,其和必在C中。故可定义类C为类A类B之和。以C=A+B表之。同样,可以定义A-B及A*B。由定理二也可推得“对模m之诸类,对加减乘自封”,但对除法不一定可能,例如3*2≡1*2,2≡2(mod 4),但3!≡1(mod 4)。故有定理三。

定理三    若ac≡bd(mod m),c≡d(mod m)及(c,m)=1,则a≡b(mod m)。

以O表诸m之倍数所成之类,易知A+O=A,A*O=O。又以I表以m除余1诸数所成之类,易见A*I=A。即由A*B=A*C不一定可得B=C。但A中之数与m为互素(注意:如A中有一数与m互素,则其他诸数也与m互素),则可得B=C。如取m为素数p,则除O之外,其他诸类皆与m互素。故得“对素数p,所有的同余类对加减乘除自封,但行除法时,不能以O去除”。

 

§3 缩剩余系

前节已述及,若一类A中有一数与m互素,则A中所有数皆与m互素,或迳述为类A与m互素。若类A与m互素,定义B/A,特别以A^{-1}记I/A。例如:

A01234
A^(-1)X1324

             (mod 5)

 

 

A012345
A^(-1)X1XXX5

             (mod 6)

 

 

表中“X”表示“无意义”。

定义    命ψ(m)为m互素之类之个数。此ψ(m)命为Euler函数,在与m互素之诸类中各取一代表a_1,\cdots ,a_{\varphi (m)},此名为一缩剩余系或简称缩系,例如:ψ(1)=1,ψ(2)=1,ψ(3)=2,ψ(4)=2等等。此ψ(m)也可述为:不大于m且与m互素之正整数之个数。若m=p为素数,则ψ(p)=p-1。

定理一    若a_1,a_2,\cdots ,a_{\varphi (m)}为一缩系,及(k,m)=1,则ka_1,ka_2,\cdots ,ka_{\varphi (m)}亦为一缩系。

定理二    (Euler) 若(k,m)=1,则k^{\varphi (m)}\equiv 1(mod\, m)

取m=p,立得Fermat定理。

定理三    若p为素数,则对所有之整数a有次之同余式a^p\equiv a(mod\, p)

 

戳此查看 完全剩余系与缩剩余系的性质及解法 参考文档

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值