唐宇迪学习笔记9:逻辑回归与梯度下降策略

目录

一、案例实战:Python实现逻辑回归任务概述

Logistic Regression

1、读取数据 

2、看数据维度 

3、 'Admitted'==1/'Admitted'==0图像

实现The logistic regression

二、案例实战:完成梯度下降模块

1、sigmoid 函数

表达式

 sigmoid 函数画图展示

2、完成预测函数

3、构造数据

检查结果

4、数据组合

损失函数 

计算梯度

三、案例实战:停止策略与梯度下降案例

1、比较3中不同梯度下降方法

2、将数据进行洗牌 

3、时间对结果的影响 

4、功能性函数

5、结果

四、案例实战:实验对比效果

1、对比不同停止策略

根据损失值停止

根据梯度变化停止 

2、对比不同的梯度下降方法 

Stochastic descent

Mini-batch descent

精度 


一、案例实战:Python实现逻辑回归任务概述

Logistic Regression

我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。

#三大件
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

1、读取数据 

import os
path = 'data' + os.sep + 'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
pdData.head()

2、看数据维度 

pdData.shape

3、 'Admitted'==1/'Admitted'==0图像

positive = pdData[pdData['Admitted'] == 1] # returns the subset of rows such Admitted = 1, i.e. the set of *positive* examples
negative = pdData[pdData['Admitted'] == 0] # returns the subset of rows such Admitted = 0, i.e. the set of *negative* examples

fig, ax = plt.subplots(figsize=(10,5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')

实现The logistic regression

目标:建立分类器(求解出三个参数 \large \theta_{0} \theta_{1} \theta_{2}

设定阈值,根据阈值判断录取结果

二、案例实战:完成梯度下降模块

要完成的模块:

  • sigmoid : 映射到概率的函数

  • model : 返回预测结果值

  • cost : 根据参数计算损失

  • gradient : 计算每个参数的梯度方向

  • descent : 进行参数更新

  • accuracy: 计算精度

1、sigmoid 函数

\large g(z)=\frac{1}{1+e^{-z}}

  • g:R→[0,1]
  • 𝑔(0)=0.5
  • 𝑔(−∞)=0
  • 𝑔(+∞)=1
  • 表达式

def sigmoid(z):
    return 1 / (1 + np.exp(-z))
  •  sigmoid 函数画图展示

nums = np.arange(-10, 10, step=1) #creates a vector containing 20 equally spaced values from -10 to 10
fig, ax = plt.subplots(figsize=(12,4))
ax.plot(nums, sigmoid(nums), 'r')

2、完成预测函数

插入一列,值为1。作用:将数值计算转化为矩阵运算。

def model(X, theta):
    
    return sigmoid(np.dot(X, theta.T)) #np.dot:矩阵乘法

3、构造数据


pdData.insert(0, 'Ones', 1) # in a try / except structure so as not to return an error if the block si executed several times


# set X (training data) and y (target variable)
orig_data = pdData.values# convert the Pandas representation of the data to an array useful for further computations
cols = orig_data.shape[1]
X = orig_data[:,0:cols-1]
y = orig_data[:,cols-1:cols]

# convert to numpy arrays and initalize the parameter array theta
#X = np.matrix(X.values)
#y = np.matrix(data.iloc[:,3:4].values) #np.array(y.values)
theta = np.zeros([1, 3])  #占位

检查结果

X[:5]

y[:5]

 

theta

X.shape, y.shape, theta.shape

 

4、数据组合

  • 损失函数 

def cost(X, y, theta):  #x:数据  y:标签
    left = np.multiply(-y, np.log(model(X, theta)))
    right = np.multiply(1 - y, np.log(1 - model(X, theta)))
    return np.sum(left - right) / (len(X))

损失值: 

cost(X, y, theta)

  • 计算梯度

def gradient(X, y, theta):
    grad = np.zeros(theta.shape)   #定义梯度
    error = (model(X, theta)- y).ravel()   #
    for j in range(len(theta.ravel())): #for each parmeter
        term = np.multiply(error, X[:,j])
        grad[0, j] = np.sum(term) / len(X)
    
    return grad

三、案例实战:停止策略与梯度下降案例

1、比较3中不同梯度下降方法

STOP_ITER = 0    #根据迭代次数
STOP_COST = 1    #根据损失值目标函数的变化
STOP_GRAD = 2    #根据梯度
def stopCriterion(type, value, threshold):
    #设定三种不同的停止策略
    if type == STOP_ITER:        return value > threshold 
    elif type == STOP_COST:      return abs(value[-1]-value[-2]) < threshold 
    elif type == STOP_GRAD:      return np.linalg.norm(value) < threshold  

2、将数据进行洗牌 

数据顺序进行打乱(shuffle),重新指定x,y。

import numpy.random
#洗牌
def shuffleData(data):
    np.random.shuffle(data)
    cols = data.shape[1]
    X = data[:, 0:cols-1]
    y = data[:, cols-1:]
    return X, y

3、时间对结果的影响 

import time

def descent(data, theta, batchSize, stopType, thresh, alpha):
    #梯度下降求解
    
    init_time = time.time()
    i = 0 # 迭代次数
    k = 0 # batch
    X, y = shuffleData(data)
    grad = np.zeros(theta.shape) # 计算的梯度
    costs = [cost(X, y, theta)] # 损失值

    
    while True:
        grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta)
        k += batchSize #取batch数量个数据
        if k >= n: 
            k = 0 
            X, y = shuffleData(data) #重新洗牌
        theta = theta - alpha*grad # 参数更新
        costs.append(cost(X, y, theta)) # 计算新的损失
        i += 1 

        if stopType == STOP_ITER:       value = i
        elif stopType == STOP_COST:     value = costs
        elif stopType == STOP_GRAD:     value = grad
        if stopCriterion(stopType, value, thresh): break
    
    return theta, i-1, costs, grad, time.time() - init_time

 4、功能性函数

def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    #执行一次更新
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    #图上显示名字
    name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize==n: strDescType = "Gradient"
    #根据参数选择梯度下降方式和停止策略
    elif batchSize==1:  strDescType = "Stochastic"
    else: strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
    else: strStop = "gradient norm < {}".format(thresh)
    name += strStop
    #画图展示得到结果
    print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, 'r')
    ax.set_xlabel('Iterations')
    ax.set_ylabel('Cost')
    ax.set_title(name.upper() + ' - Error vs. Iteration')
    return theta

5、结果

#选择的梯度下降方法是基于所有样本的
n=100
runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001)

四、案例实战:实验对比效果

1、对比不同停止策略

根据损失值停止

设定阈值 1E-6, 差不多需要110 000次迭代

runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001)

根据梯度变化停止 

设定阈值 0.05,差不多需要40 000次迭代

runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001)

2、对比不同的梯度下降方法 

Stochastic descent

runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
#1:迭代一个样本

迭代非常不稳定,非常不平衡。不收敛。

把学习率调小一些,迭代次数增多

速度快,但稳定性差,需要很小的学习率 

Mini-batch descent

runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)

浮动仍然比较大,我们来尝试下对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1 。

from sklearn import preprocessing as pp

scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])

runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)

它好多了!原始数据,只能达到达到0.61,而我们得到了0.38个在这里! 所以对数据做预处理是非常重要的!!!

runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001)

更多的迭代次数会使得损失下降的更多!

theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001)

 随机梯度下降更快,但是我们需要迭代的次数也需要更多,所以还是用batch的比较合适!!!

runExpe(scaled_data, theta, 16, STOP_GRAD, thresh=0.002*2, alpha=0.001)

精度 

#设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值