电子科技大学 图论期末复习 公式索引


title: 图论期末考试复习
date: 2020-08-17 09:01:09
tags:

参考资料:《图论及其应用》 高等教育出版社 张先迪 / 李正良
仅用于方便复习公式查阅,公式或多有误,请以教材为准。


文章目录

引言

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一章 图的基本概念

图与简单图

图的定义及其相关概念

  • 定义1:一个图是一个序偶<V,E>,记为G=(V,E),其中:
    • (1) V是一个有限的非空集合,称为顶点集合,其元素称
    • 为顶点或点。用|V|表示顶点数;
      (2) E是由V中的点组成的无序对构成的集合,称为边集,
      其元素称为边,且同一点对在E中可以重复出现多次。用
      |E|表示边数。
  • 相关概念
    • 有限图:顶点集和边集都有限的图称为有限图。
    • 平凡图与空图:只有一个顶点的图称为平凡图;只有点
      没有边的图称为空图
    • n阶图:顶点数为n的图,称为n阶图。
    • (n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图。
    • 边的重数:连接两个相同顶点的边的条数称为边的重
      数;重数大于1的边称为重边。
    • :端点重合为一点的边称为环。
    • 简单图:无环无重边的图称为简单图;其余的图称为
      复合图。
    • 顶点u与v相邻接:顶点u与v间有边相连接(u adjv);其中
      u与v称为该边的两个端点。
    • 点u与边e相关联:顶点u是边e的端点。
    • 边e1与边e2相邻接:边e1与边e2有公共端点。

图的同构

  • 定义2:设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点
    集合间存在双射,使得边之间存在如下关系:u1,v1$ \in $ V1,
    u2,v2$ \in V 2 , 设 u 1 ↔ u 2 , v 1 ↔ v 2 , ; u 1 v 1 V2 ,设u1↔u2,v1↔v2,; u1v1 V2u1u2v1v2,;u1v1 \in $E1 当且仅当u2v2 $ \in E 2 , 且 u 1 v 1 与 u 2 v 2 的 重 数 相 同 。 称 G 1 与 G 2 同 构 , 记 为 : E2, 且u1v1与u2v2的重数相同。称G1与G2同构,记为: E2,u1v1u2v2G1G2 G 1 ≅ G 2 {G_1} \cong {G_2} G1G2$
  • 1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。
  • 例3 下面两图同构吗?请给出证明。
    • 证明:作映射f : vi ↔ ui
    • 容易证明,对 ∀ \forall vi v j $ \in E ( ( a ) ) , 有 f ( v i , v j ) = u i u j E ((a)),有f (v i ,vj) = uiuj E((a)),f(vi,vj)=uiuj \in $E ((b))
作业题P29—P30 3, 4, 5, 6

完全图偶图与补图

  • 完全图
  • 偶图
  • 完全偶图
  • 简单图和补图
  • 自补图
    • 定义4 如果图G与其补图同构,则称G为自补图。
定理1:若n阶图G是自补图,则有: n % 4 = 0 o r 1 n\%4 = 0 or 1 n%4=0or1
  • 证明

顶点的度与图的度序列

  • 定义5 G的顶点v的度d (v)是指G中与v关联的边的数目,每个环计算两次
定理2 握手定理 图G= (V, E)中所有顶点的度的和等于边数m的2倍,即:

在这里插入图片描述

  • 推论1 在任何图中,奇点个数为偶数。
  • 推论2 正则图的阶数和度数不同时为奇数 。
  • 例3 Δ与δ是简单图G的最大度与最小度,求证: 在这里插入图片描述
  • 证明:握手定理

图的度序列及其性质

  • 定义6 一个图G的各个点的度d1, d2,…, dn构成的非负整数组
    (d1, d2,…, dn)称为G的度序列。
  • 1、一个图的度序列与序列中元素排列无关;
定理3 非负整数组(d1,d2,…., d n)是图的度序列的充分必要条件是序列中元素总和为偶数。
  • 证明:
    • 必要性: 握手定理
    • 充分性: 构造法(若di为偶数,则在与之对应的点作di/2个环;对于剩下的偶数个奇数,
      顶点画dj-1/2个环。该图的度序列就是已知数组。)

图序列及其性质

  • 定义7 一个非负整数组如果是某简单图的度序列,我们称
    它为可图序列,简称图序列。
定理4 非负整数组

在这里插入图片描述
是图序列的充分必要条件是:
在这里插入图片描述
是图序列。

定理5 (厄多斯1960) 非负整数组

π = ( d 1 , d 2 , ⋯   , d n ) , d 1 ≥ d 2 ≥ ⋯ ≥ d n , ∑ i = 1 n d i = 2 m \pi = ({d_1},{d_2}, \cdots ,{d_n}),{d_1} \ge {d_2} \ge \cdots \ge {d_n},\sum\limits_{i = 1}^n { {d_i} = 2m} π=(d1,d2,,dn),d1d2dn,i=1ndi=2m
是图序列的充分必要条件是:
在这里插入图片描述

  • 图的频序列及其性质:
    • 定义8 设n阶图G的各点的度取s个不同的非负整数
      d1,d2,…, ds。又设度为di的点有bi个 (i = 1,2,…,s),则 在这里插入图片描述故非整数组(b1,b2,…, bs)是n的一个划分,称为G的频序列
定理6 一个简单图G的n个点的度不能互不相同.
  • 注:一个简单图频序列中 至少有一个元素大于或等于2。
  • 证明: 因为图G为简单图,所以:△(G)≤n-1。 鸽笼原理。
定理7 一个n阶图G和它的补图有相同的频序列
  • 证明: 设图G的任一顶点v的度数为k,则该顶点在补图中的度数为n-1-k。因此:在G中有b个度数为k的顶点,则在补图中就有b个度数为n-1-k个顶点。
作业 P29—P30 8, 9, 10, 11
  • 9、证明:若k正则偶图具有二分类V= V1∪V2,则 | V1| = |V2|。
    • 证明: 由于G为k正则偶图,所以,k |V1| =m = k|V2| >> |V1|= |V2|。
  • 12、证明:若δ≥2,则G包含圈。

子图与图运算

子图的相关概念

  • 子图
    • 边导出子图
    • 点导出子图
  • 生成子图 定义3 如果图G的一个子图包含G的所有顶点,称
    该子图为G的一个生成子图。
定理1 简单图G=(n, m) 的所有生成子图个数为2^m.

图运算

  • 图的删点、删边运算
    • 删点 在G中删去v中的顶点和G中与之关联的所有边的操作,称为删点运算
    • 删边
    • 注:删点要删关联的边,删边不删关联的点!
  • 图的并运算 G 1 ∪ G 2 G1 \cup G2 G1G2
    • 点和边 均取交集
    • 如果G1,G2不相交(没有公共顶点),称它们的并为直接并,可以记为: G 1 + G 2 G1 + G2 G1+G2
  • 图的交运算
    • 点和边 均取交集
  • 图的差运算
    • 设G1,G2是两个图,G1与G2的差是指从G1中删去G2中的边得到的新图。记为G1-G2.
  • 图的对称差运算(或环和运算)
    • 设G1,G2是两个图,G1与G2的对称差定义为:在这里插入图片描述
  • 图的联运算
    • 设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2中的每个顶点连接,这样得到的新图称为G1与G2的联图。记为 :在这里插入图片描述
  • 图的积图
    • 在这里插入图片描述在这里插入图片描述
  • 图的合成图
    • 在这里插入图片描述
  • “超立方体”
    • 在这里插入图片描述
    • n立方体的构造:
      • n方体Q n的顶点可用一个长度为n的二进制码来表示。Q n的顶点数目正好等于2n个。
      • 由n-1方体Q n-1构造Q n的方法是:将Q n-1拷贝一个。将原Q n-1每个顶点的码前再添加一个零,将拷贝得来的n-1方体每个顶点的码前面再添加一个1。然后在两个n-1方体之间连线:当且仅当两个顶点码只有一位对应位数字不同时,该两点连线。如此得到的图即为n方体

路与连通性

路与圈的相关概念

  • 图中的途径
    • G 的一条途径(或通道或通路)是指一个有限非空序列:
      w= v0 e1 v1 e2 v2…ek vk,它的项交替地为顶点和边,使得ei的端点是vi-1和vi.(1≤i≤k).
    • 途径中边数称为途径的长度;v0,vk分别称为途径的起点与终点,其余顶点称为途径的内部点。
  • 图中的迹 边不重复的途径称为图的一条
  • 图中的路 顶点不重复的途径称为图的一条
    • 1、路是途径,也是迹,迹是途径;
    • 2、起点与终点重合的途径、迹、路分别称为图的闭途径、闭迹与圈闭迹也称为回路。长度为k的圈称为k圈,k为奇数时称为奇圈,k为偶数时称为偶圈。#

连通性相关概念

  • 两顶点的距离

    • 图中顶点u与v的距离:u与v间最短路的长度称为u与v间距离。记为
      d (u, v), 如果u与v间不存在路,定义d (u, v)=∞.
  • 两顶点的连通性 图G中点u与v说是连通的,如果u与v间存在途径。否则称u与v不连通。容易知道:点的连通关系是等价关系。

  • 连通图与连通分支

    • (1) 如果图G中任意两点是连通的,称G是连通图,否则,称G是非连通图。
    • (2)非连通图中每一个极大连通部分,称为G的连通分支。G的连通分支的个数,称为G的分支数,记为 ω ( G ) \omega(G) ω(G).
  • 图的直径

    • 连通图G的直径定义为: 在这里插入图片描述
    • 如果G不连通,图G的直径定义为无穷大
连通性性质
定理1:若图G不连通,则其补图连通。

偶图的判定定理

定理2 一个图是偶图当且当它不包含奇圈。
  • 证明
    • 必要性: 一来一回
    • 充分性:
      • 在G中任意选取点u, 定义V的分类如下:
      • X = {x | d (u, x) 是偶数,x ∈V (G)}
      • Y = {y | d (u, y) 是奇数,y ∈V (G)}
      • 下面证明:对X中任意两点v与w , v与w不邻接即可!
        在这里插入图片描述
      • 注: P − 1 Q P^{-1}Q P1Q为偶,如果vw邻接,则 P − 1 Q u v P^{-1}Quv P1Quv为奇圈
作业 P29—P30 13, 14, 20, 22
  • 13、 证明:若G是简单图且δ≥2,则G包含长至少是δ+1的圈。
  • 14、G的围长是指G中最短圈的长;若G没有圈,则定义G的围长为无穷大。证明:
    • (1) 围长为4的k的正则图至少有2k个顶点,且恰有2k个顶点的这样的图(在同构意义下)只有一个。
    • (2) 围长为5的k正则图至少有k2+1个顶点

分析: k正则图 \delta = k = \Delta,2m=kn
围长: 用邻点集合来分析

  • 20、证明:若G的直径大于3,则G的补图的直径小于3。

考虑G中任意两点u,v
- u,v 相邻
- u,v 不相邻
- 若在V(G)中任意顶点至少和u,v之一相连,>>G的直径大于3,矛盾
- 所以 存在一点w,使得uw,wv ∉ \notin /E(G)

  • 22.证明:若G是至少有三个点的简单连通图但不是完全图,则G有三个顶点u, v和w,使得 uv, vw∈E,而uw ∉ \notin /E。

由于G是非完全连通图,所以在G中必然存在不邻接的两点
在这里插入图片描述

最短路及其算法

最短路应用

  • 状态转换问题(最少的状态转换次数)
    • 例2 某两人有一只8升的酒壶装满了酒,还有两只空壶,分别为5升和3升。求最少的操作次数能均分酒。
    • 例3 在一河岸有狼,羊和卷心菜。摆渡人要将它们渡过河去,由于船太小,每次只能载一样东西。由于狼羊,羊卷心菜不能单独相处。问摆渡人至少要多少次才能将其渡过河?
  • 某公司在六个城市C1,C2,C3,C4,C5,C6中有分公司,从Ci到Cj的直接航程票价记在下述矩阵的(i, j)位置上,∞表示没有直接航程。制作一张任意两城市间的最便宜的路线表。
    在这里插入图片描述
作业 P29—P30 16
  • 1.16 a到其他所有所有的距离

最短路算法求解时,终止条件变为所有顶点被遍历到

图的代数表示及其特征

图的邻接矩阵

  • 定义1 设G为n阶图,V={v1, v2, …, vn}, 邻接矩阵 A(G)=(aij),其中:
    在这里插入图片描述
  • 邻接矩阵的性质
    • (1)非负性与对称性。
    • (2) 同一图的不同形式的邻接矩阵是相似矩阵
    • (3) 如果G为简单图,则A(G)为布尔矩阵;行和(列和)等于对应顶点的度数;矩阵元素总和为图的总度数,也就是G的边数的2倍。
    • G连通的充分必要条件是:A(G)不能与如下矩阵相似:在这里插入图片描述
      • 证明:
        • 必要性:vi (1≤i≤k)与vj (k+1≤i≤n)不邻接
        • 充分性:设G1与G2是G的两个不连通的部分,并且设
          V(G1)={v1,v2,…,vk}, V(G2)={vk+1,vk+2,…,vn}, 如果在写G的邻接矩阵时,先排V(G1)中点,再排V(G2)中点,则G的邻接矩阵形式必为:
      • 这个性质说明:非连通图的邻接矩阵一定能够写成准
        对角矩阵形式。
定理1 设 在这里插入图片描述,则 a i j ( k ) a_{ij}^{(k)} aij(k)表示顶点vi到顶点vj的途径长度为k的途径条数。
  • 证明: 对k作数学归纳

    • 在这里插入图片描述
    • 设vm是vi到vj的途径中点,且该点和vj邻接。则vi到vj的经过vm且长度为k的途径数目应该为:在这里插入图片描述
    • vi到vj的长度为k的途径数目为:在这里插入图片描述
  • 推论: (1) A 2 A^2 A2的元素 a i i ( 2 ) aii^{(2)} aii(2)vi的度数 A 3 A^3 A3的元素 a i i ( 3 ) aii^{(3)} aii(3)是含vi的三角形个数的2倍

图的关联矩阵

  • 定义2 若G是(n, m) 图。定义G的关联矩阵:在这里插入图片描述在这里插入图片描述
  • 关联矩阵的性质
    • (1) 关联矩阵的元素为0,1或2;
    • (2) 关联矩阵的每列和为2;每行的和为对应顶点度数.

极图

邻接谱、邻接代数与图空间

  • 图的邻接谱
    • 定义1:图的邻接矩阵A(G)的特征值及其重数,称为G的邻接谱。
    • Kn的邻接谱为:在这里插入图片描述
    • 定义2 若两个非同构的n阶图具有相同的谱,则称它们是同谱图
  • 邻接谱的两个性质
    • 定理1 设单图A(G)的谱为:在这里插入图片描述在这里插入图片描述
      • 证明: 在这里插入图片描述
    • 定理2 设λ是单图G = (n, m)的任意特征值,则:在这里插入图片描述
  • 图的邻接代数
    • 定义3:设A是无环图G的邻接矩阵,则:在这里插入图片描述对于矩阵的加法和数与矩阵的乘法来说作成数域C上的向量空间,称该空间为图G的邻接代数。
  • 定理3:G为n阶连通无环图,则:在这里插入图片描述
  • 图空间

托兰定理

  • l 部图的概念与特征

    • 定义4 若简单图G的点集V有一个划分:在这里插入图片描述且所有的Vi非空,Vi内的点均不邻接,称G是一个l 部图。
      在这里插入图片描述
  • 定理5 n阶l部图G有最多边数的充要条件是G ≌ T l , n T_{l,n} Tl,n

  • 度弱 设G和H是两个n阶图,称G度弱于H,如果存在双射μ:V(G)→V(H),使得:
    在这里插入图片描述

定理6 若n阶简单图G不包含 K l + 1 K_{l+1} Kl+1,则G度弱于某个完全 l 部图 H,且若G具有与 H 相同的度序列,则: 在这里插入图片描述
定理7(Turán)若G是简单图,并且不包含 K l + 1 K_{l+1} Kl+1,则: m ( G ) ≤ m ( T l , n ) m(G) \leq m(T_{l,n}) m(G)m(Tl,n)

仅当
在这里插入图片描述
在这里插入图片描述

  • 不含 K l + 1 K_{l+1} Kl+1的极值图是完全l几乎等部图。
不含子图H( K l + 1 K_{l+1} Kl+1)最多边数: m ( n , K l + 1 ) = ( l − 1 ) ( n 2 − r 2 ) / ( 2 l ) + C ( r , 2 ) m(n,K_{l+1}) = (l-1)(n^2-r^2)/(2l)+C(r,2) m(n,Kl+1)=(l1)(n2r2)/(2l)+C(r,2)
  • 托兰定理应用:工兵排雷问题
连通偶图的2部划分是唯一的

第二章 树

树的概念与性质

  • 树的概念
  • 定义1 不含圈的图称为无圈图,树是连通的无圈图。
  • 定义2 称无圈图G为森林。
  • 注: (1)树与森林都是单图;
  • (2) 树与森林都是偶图。
定理1 每棵非平凡树至少有两片树叶。
  • 证明 设P=v1v2…vk是非平凡树T中一条最长路,则v1与vk在T中的邻接点只能有一个,否则,要么推出P不是最长路,要么推出T中存在圈,这都是矛盾!即说明v1与v2是树叶。
定理2 图G是树当且仅当G中任意两点都被唯一的路连接。
  • 证明:
    • “必要性” 若不然,设P1与P2是连接u与v的两条不同的路。则由这两条路的全部或部分将构成一个圈,这与G是树相矛盾。
    • “充分性” 首先,因G的任意两点均由唯一路相连,所以G是连通的。其次,若G中存在圈,则在圈中任取点u与v,可得到连接u与v的两条不同的路,与条件矛盾。

定理3 设T是(n, m)树,则: m = n − 1 m = n - 1 m=n1

  • 证明:对n作数学归纳。
  • 由定理1 T中至少有两片树叶,设u是T中树叶,考虑
    T1=T-u,则T1为k阶树,于是m(T1)=k-1, 得m(T)=k。
推论1 具有k个分支的森林有n-k条边。
定理4 每个n阶连通图的边数至少为n-1.
  • 证明:
    • 如果n阶连通图没有一度顶点,那么由握手定理有: m ( G ) = 1 2 ∑ v ∈ V ( G ) d ( v ) ≥ n m(G) = {1 \over 2}\sum\limits_{v \in V(G)}^{} {d(v)} \ge n m(G)=21vV(G)d(v)n
    • 如果G有一度顶点。对顶点数作数学归纳。
      • n=1
      • n=k
      • n=k+1 设u是G的一度顶点,G-u为具有k个顶点的连通图。
        • 若G-u有一度顶点,则由归纳假设,其边数至少k-1,于是G的边数至少有k条;
        • 若G-u没有一度顶点,则由握手定理: m ( G ) = 1 2 ∑ v ∈ V ( G ) d ( v ) ≥ n m(G) = {1 \over 2}\sum\limits_{v \in V(G)}^{} {d(v)} \ge n m(G)=21vV(G)d(v)n
        • 所以G至少有k+1条边。
定理5 任意树T的两个不邻接顶点之间添加一条边后,可以得到唯一圈
  • 证明: 路的唯一 到圈的唯一
  • 例8 设G是树且Δ≧k,则G至少有k个一度顶点。
  • 证明: 反证:握手定理+树的性质
  • 例9设G是森林且恰有2k个奇数顶点,则在G中有k条边不重合的路P1, P2 ,…, Pk,使得: E ( G ) = E ( P 1 ) ∪ E ( P 2 ) ∪ ⋯ ∪ E ( P k ) E(G) = E({P_1}) \cup E({P_2}) \cup \cdots \cup E({P_k}) E(G)=E(P1)E(P2)E(Pk)
  • 证明:对k作数学归纳。
    • 当k=1时,G只有两个奇数度顶点,此时,容易证明,G是一条路;
    • 设当k=t时,结论成立。令k=t+1
    • 在G中一个分支中取两个一度顶点u与v,令P是连接该两个顶点的唯一路,则G-P是有2t个奇数顶点的森林,由归纳假设,它可以分解为t条边不重合的路之并,所以G可以分解为t+1条边不重合的路之并。
定理6 设S={d1,d2,…,dn}是n个正整数序列,它们满足:d1≧d2≧…≧dn ,∑di=2(n-1).则存在一颗树T,其度序列为S。
  • 证明:对n作数学归纳。
    • 当n=1和2时,结论显然。
    • 假设对n=k时结论成立。设n=k+1
    • 首先,序列中至少一个数为1,否则,序列和大于2k,与条件相矛盾!
    • 所以,dk+1=1.我们从序列中删掉d1和dk+1,增加数
      d* =d1-1放在它应该在的位置。得到序列S1.该序列含k个数,序列和为2(k-1),由归纳假设,存在树T1,它的度序列为S1.
    • 现在,增加结点v,把它和T1中点d*相连得到树T。树T为所求。

树的中心与形心

  • (1)图的顶点的离心率 e ( v ) = max ⁡ { d ( u , v ) ∣ u ∈ V ( G ) } e(v) = \max \left\{ {d(u,v)\left| {u \in V(G)} \right.} \right\} e(v)=max{ d(u,v)uV(G)}
  • (2)图的半径 r ( G ) = min ⁡ { e ( v ) ∣ v ∈ V ( G ) } r(G) = \min \left\{ {e(v)\left| {v \in V(G)} \right.} \right\} r(G)=min{ e(v)vV(G)}
  • (3)图的直径:最大离心率。
  • (4)图的中心点:离心率等于半径的点。
  • (5)图的中心:中心点的集合
定理7 每棵树的中心由一个点或两个相邻点组成。
  • 证明:对树T的阶数n作归纳证明。
    • 当n=1或2时,结论显然成立。
    • 设对n<k(k≧3)的树结论成立。设T是k阶树。
    • 容易知道:删掉T的所有叶,得到的树T1的每个点的离心率比它们在T中离心率减少1。又因T的叶不能是中心点,所以T的中心点在T1中。这样,若点u的离心率在T中最小,则在T1中依然最小,即说明T的中心点是T1的中心点,反之亦然。
    • 因为T1的阶数<k,所以,由归纳假设,T1的中心为一个点或两个相邻点组成,即证明T的中心由一个点或两个相邻点组成
  • 树的形心概念与性质
    • 设u是树T的任意一个顶点,树T在顶点u的分支是指包含u作为一个叶点的极大子树其分支数为顶点u的度数;树T在u点的分支中边的最大数目称为点u的权;树T中权值最小的点称为它的一个形心点。全体形心点的集合称为树T的形心。
定理8 每一棵树有一个由一个点或两个邻接的点组成的形心。
作业 P43 习题2 : 1,2,3,4,5,6
  • 2.1 证明:非平凡树的最长路的起点和终点均是 1 度的。
    • 反证
  • 2.2 证明:每棵恰有两个1 度顶点的树均是路。
    • 反证: 握手定理+ 树的性质
  • 2.3 若G 是树且最大度 >= k ,则G 至少有k个 1 度顶点。
    • 反证 : 握手定定理+树的性质
  • 2.4 见例题9
  • 2.5 证明:正整数序列1 2 ( , , , ) k d d  d 是一棵树的度序列当且仅当度数和为2(n-1)
    • 证明:
      • 必要性: m=n-1
      • 充分性: 对n作数学归纳 (见定理6)
  • 2.6 设T 是有k 1个顶点的任意一棵树。证明:若G 是简单图且 δ ≥ k \delta\geq k δk,则G 有一个
    子图同构于T 。
    • 证明:对k进行归纳。
    • 当k=1时,结论显然成立
    • k=n 显然成立
    • 在这里插入图片描述

生成树

生成树的概念与性质

  • 定义1 图G的一个生成子图T如果是树,称它为G的一棵生成树;若T为森林,称它为G的一个生成森林。
  • 生成树的性质
定理1 每个连通图至少包含一棵生成树。
  • 证明:如果连通图G是树,则其本身是一棵生成树;若连通图G中有圈C,则去掉C中一条边后得到的图仍然是连通的,这样不断去掉G中圈,最后得到一个G的无圈连通子图T,它为G的一棵生成树
  • 推论 若G是(n, m)连通图,则m≧n-1

生成树的计数

凯莱递推计数法
  • 定义2 图G的边e称为被收缩,是指删掉e后,把e的两个端点重合,如此得到的图记为G.e
  • 用τ(G)表示G的生成树棵数。
定理2 (Cayley) 设e是G的一条边,则有: τ ( G ) = τ ( G − e ) + τ ( G e ) \tau (G) = \tau (G - e) + \tau (Ge) τ(G)=τ(Ge)+τ(Ge)
  • 证明:对于G的一条边e来说,G的生成树中包含边e的棵数为τ(G.e ),而不包含e的棵数为τ (G-e).
  • 例题
    在这里插入图片描述
关联矩阵计数法
  • 定义3 :n×m矩阵的一个阶数为min{n, m}的子方阵,称为它的一个主子阵;主子阵的行列式称为主子行列式。
  • 显然,当n<m时,n×m矩阵 C m n C_m^n Cmn个主子阵。
定理3 设Am是连通图G的基本关联矩阵的主子阵,则Am非奇异的充分必要条件是相应于Am的列的那些边构成G的一棵生成树。
  • 该定理给出了求连通图G的所有生成树的方法:
    • (1) 写出G的关联矩阵,进一步写出基本关联矩阵(选一个点,去掉该点对应的行),记住参考点; (因为m=n-1)
    • (2) 找出基本关联矩阵的非奇异主子阵,对每个这样的主子阵,画出相应的生成树。
矩阵树定理
定理4 (矩阵树定理) 设G是顶点集合为V(G)={v1,v2,…,vn},的图,设A=(aij)是G的邻接矩阵,C=(cij)是n阶方阵,其中:

在这里插入图片描述
则G的生成树棵数为C的任意一个(代数)余子式的值。

  • 定理中的矩阵C又称为图的拉普拉斯矩阵,又可定义为: C = D ( G ) − A ( G ) C = D(G) - A(G) C=D(G)A(G)其中,D(G)是图的度对角矩阵,即主对角元为对应顶点度数,其余元素为0。A(G)是图的邻接矩阵。
  • 例4 证明τ(Kn)=nn-2(教材上定理7)

回路系统简介

  • 定义4 连枝 树枝 设T是连通图G的一棵生成树,把属于G但不属于T的边称为G关于T的连枝,T中的边称为G关于T的树枝。
  • 定义5 基本回路 设T是连通图G的一棵生成树,由G的对应于T一条连枝与T中树枝构成的唯一圈C,称为G关于T的一个基本圈或基本回路。若G是(n, m)连通图,把G对应于T的m-n+1个基本回路称为G对应于T的基本回路组。记为Cf…
  • 基本回路的性质:
定理4 设T是连通图G=(n, m) 的一棵生成树,C1, C2,…,Cm-n+1是G对应于T的基本回路组。定义:1.Gi=Gi , 0.Gi=Φ,Gi是G的回路。则G的回路组作成的集合对于该乘法和图的对称差运算来说作成数域F={0,1}上的m-n+1维向量空间。
  • 说明: 连通图G的所有回路作成子图空间的一个子空间,该空间称为回路空间或回路系统。
  • 例5 求下图G的回路空间的一个基底和它的全部元素。
P43 习题2 : 12, 14, 15
  • 2.12 求K3,3的生成树数量
  • 2.14 证
  • 2.15 在这里插入图片描述

分析:

  • 选边
  • 破圈法,不同的破圈方式

最小生成树

克鲁斯克尔算法

  • 思想: 从G中的最小边开始,进行避圈式扩张。

  • 定理1 由克鲁斯克尔算法得到的任何生成树一定是最小生成树。(证明略)

管梅谷的破圈法

  • 破圈法求最小生成树的求解过程是:从赋权图G的任意圈开始,去掉该圈中权值最大的一条边,称为破圈。不断破圈,直到G中没有圈为止,最后剩下的G的子图为G的最小生成树。

Prim算法

  • 对于连通赋权图G的任意一个顶点u,选择与点u关联的且权值最小的边作为最小生成树的第一条边e1;
  • 在接下来的边e2,e3,…,en-1 ,在与一条已经选取的边只有一个公共端点的的所有边中,选取权值最小的边。
  • 反证法可以证明该算法。即证明:由Prim算法得到的生成树是最小生成树。(证明略)

根树简介

  • 定义2:一棵树T,如果每条边都有一个方向,称这种树为有向树。对于T的顶点v来说,以点v为终点的边数称为点v的入度,以点v为起点的边数称为点v的出度。入度与出度之和称为点v的度。
  • 定义3 根树:一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根,出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点和树根统称为分支点
  • 定义4:对于根树T,顶点v到树根的距离称为点v的层数;所有顶点中的层数的最大者称为根树T的树高
  • 定义5:对于根树T,若规定了每层顶点的访问次序,这样的根树称为有序树
  • 注:一般次序为从左至右。有时也用边的次序代替顶点次序。
  • 定义6:对于根树T,由点v及其v的后代导出的子图,称为根树的子根树。
  • 定义7:对于根树T,若每个分支点至多m个儿子,称该根树为m元根树;若每个分支点恰有m个儿子,称它为完全m元树
定理2 在完全m元树T中,若树叶数为t , 分支点数为i , 则: ( m − 1 ) i = t − 1 (m - 1)i = t - 1 (m1)i=t1
  • 证明:一方面,由树的性质得: m ( T ) = ( i + t ) − 1 ⋯ ( 1 ) m(T) = (i + t) - 1 \cdots (1) m(T)=(i+t)1(1)

  • 另一方面,由握手定理得:

  • 2 m ( T ) = t + m + ( i − 1 ) ( m + 1 ) ⋯ ( 2 ) 2m(T) = t + m + (i - 1)(m + 1) \cdots (2) 2m(T)=t+m+(i1)(m+1)(2)

  • 例5 一台计算机,它有一条加法指令,可以计算3个数的和。如果要求9个数的和,问至少执行多少次加法指令?

  • 对于一棵有序树,常要转化为二元树。方法是:

    • (1) 从根开始,保留每个父亲同其最左边儿子的连线,撤销与别的儿子的连线;
    • (2) 兄弟间用从左至右的有向边连接;
    • (3) 按如下方法确定二元树中结点的左右儿子:直接位于给定结点下面的儿子,作为左儿子,对于同一水平线上 与给定结点右邻的结点,作为右儿子,依此类推。
  • 二元树的遍历问题

  • 最优二元树

  • 定义8 设T是一棵二元树,若对所有t片树叶赋权值wi(1≦i≦t),且权值为wi的树叶层数为L(wi),称:
    W ( T ) = ∑ i = 1 t w i L ( w i ) W(T) = \sum\limits_{i = 1}^t { {w_i}} L({w_i}) W(T)=i=1twiL(wi)
    为该赋权二元树的权。而在所有赋权为wi的二元树中
    W(T)最小的二元树称为最优二元树。

  • 哈夫曼算法:

    • (1) 初始:令S={w1,w2,…,wt};
    • (2) 从S中取出两个权值最小者wi与wj ,画结点vi ,带权wi,画结点vj,带权wj,画vi与vj的父亲v,连接vi与v,连接vj与v,令v带权wi + wj ;
    • (3) 令S = (S-{wi ,wj})∪{wi+wj};
    • (4) 判断S是否只含一个元素,若是,停止,否则转2).
P43 习题2 : 16, 17, 18
  • 2.16
  • 2.17
  • 2.18(未弄懂

第三章 图的连通度

割边,割点和块

割边及其性质

  • 定义1 边e为图G的一条割边,如果 ω ( G − e ) > ω ( G ) \omega (G - e) > \omega (G) ω(Ge)>ω(G)
    • 注:割边又称为图的“桥”。
定理1 边 e 是图G的割边当且仅当 e 不在G的任何圈中。
  • 证明:
    • 必要性:
    • 充分性:
推论1 e为连通图G的一条边,如果e含于G的某圈中,则G-e连通。
  • 例1 求证: (1) 若G的每个顶点的度数均为偶数,则G没有割边; (2) 若G为k正则二部图(k≧2),则G无割边。
    • 证明:
    • (1)

割点及其性质

  • 定义2 在G中,如果E(G)可以划分为两个非空子集E1与E2,使G[E1]和G[E2]以点v为公共顶点,称v为G的一个割点
  • 注: 环的点算割点
定理2 G无环且非平凡,则v是G的割点,当且仅当 ω ( G − v ) > ω ( G ) \omega (G - v) > \omega (G) ω(Gv)>ω(G)
  • 证明:
定理3 v 是树T的顶点,则v是割点,当且仅当v是树的分支点。
  • 证明:
  • 例2 求证:无环非平凡连通图至少有两个非割点
  • 例3 求证:恰有两个非割点的连通单图是一条路。
    • 一个单图的任意生成树为路,则该图为圈或路
  • 例4 求证:若v是单图G的割点,则它不是G的补图的割点。
定理4 设v是无环连通图G的一个顶点,则v是G的割点,当且仅当V(G-v)可以划分为两个非空子集V1与V2,使得对任意x ∈V1, y ∈V2, 点v在每一条x y路上。

块及其性质

  • 定义3 没有割点的连通图称为是一个块图,简称块;G的一个子图B称为是G的一个块,如果(1), 它本身是块;(2), 若没有真包含B的G的块存在。
定理5 若|V(G)|≧3,则G是块,当且仅当G无环且任意两顶点位于同一圈上。
  • 证明:
    • 必要性: G不能有割点,显然无环
      • 证任意u,v在同一圈
        • 对d(u,v)做数学归纳
    • 充分性: 反证
定理6 点v是图G的割点当且仅当v至少属于G的两个不同的块。
  • 证明:

  • 块割点树 为了直观反映图的块和割点之间的联系,引进所谓的块割点树。

  • 设G是非平凡连通图。B1, B2 ,…, Bk是G的全部块,而v1,v2,…, vt是G的全部割点。构作G的块割点树 b c (G):它的顶点是G的块和割点连线只在块割点之间进行一个块和一个割点连线,当且仅当该割点是该块的一个顶点。
    在这里插入图片描述

P65—66 习题3 : 1, 2, 3,5,7,8
  • 3.1 证明:e是连通图G的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u∈V_1及v∈V_2, G中的路(u,v)必含e.
  • 3.2
  • 3.3 设G是阶大于2的连通图,证明下列命题等价:
    • (1) G是块
    • (2) G无环且任意一个点和任意一条边都位于同一个圈上;
    • (3) G无环且任意三个不同点都位于同一条路上。

证明:
(1)>(2) : 边上插入点
(2)>(3): (存疑:如何保证任意性)G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u,边e,若u不在e上,则三个不同点位于同一个圈,即位于同一条路,如u在e上,由定理e的两点在同一个圈上,在e边插入一个点v,使得e成为2条边,由此得到新图G_1,显然G_1的是阶数大于2的块,则两条边的三个不同点在同一条路上。
(3)>(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V_1, V_2, V_1, V_2无环, 点u在每一条(x,y)的路上,由于x,y的任意性,则三个不同点不能位于同一条路上,则与已知矛盾,G是块。

  • 3.5 证明:恰有两个非割点的连通图是路

连通 > 存在生成树
恰有两个割点 >> 生成树只有两个非割点(树叶) >> 生成树为路
任意生成树 为 路 >> 圈或路 >> 存在割点 只能是路

  • 3.7 (同例题4)求证:若v是单图G的割点,则它不是G的补图的割点。
  • 3.8 证明: 块的个数 ω + s u m ( b ( v ) − 1 ) \omega + sum (b(v)-1) ω+sum(b(v)1) b(v)为含v的块的个数 (未解决)

分析:

  • 先证: ω = 1 \omega = 1 ω=1的时候: 数学归纳?
    非割点只属于一个块

连通度

连通度的概念与性质

点连通度与边连通度的概念
  • 定义1 给定连通图G,设 V ′ ⊆ V ( G ) V' \subseteq V(G) VV(G),若G -V’ 不连通,称V’为G的一个点割集,含有k个顶点的点割集称为k顶点割。G中点数最少的顶点割称为最小顶点割
  • 定义2 在G中,若存在顶点割,称G的最小顶点割的顶点数称为G的点连通度;否则称n-1为其点连通度。G的点连通度记为k(G), 简记为k。若G不连通,k(G)=0。
  • 定义3 在G中,最小边割集所含边数称为G的边连通度。边连通度记为λ(G) 。若G不连通或G是平凡图,则定义λ(G) =0
  • 定义4 在G中,若k (G)≧ k, 称G是k连通的若λ(G)≧k,称G是k边连通的
连通度的性质
定理1 (惠特尼1932) 对任意图G,有: k ( G ) ≤ λ ( G ) ≤ δ ( G ) k(G) \le \lambda (G) \le \delta (G) k(G)λ(G)δ(G)
  • 证明:
定理2 设G是**(n, m)连通图**,则: k ( G ) ≤ ⌊ 2 m n ⌋ k(G) \le \left\lfloor { { {2m} \over n}} \right\rfloor k(G)n2m
  • 证明: 握手定理 + 惠特尼定理
哈拉里图:涉及可靠性通信网络构建
  • 1962年,数学家哈拉里构造了连通度是k,边数为$m = \left\lfloor { { {nk} \over 2}} \right\rfloor $
    的图Hk, n ,称为哈拉里图。
  • 哈拉里构图
    • H2r,n
      • E ( H ) = { i j ∣ ∣ i − j ∣ ≤ r ( n ) ( 取 模 n 的 加 法 ) . } E(H) = \left\{ {ij\left| {\left| {i - j} \right| \le r(n)} \right(取模n的加法).} \right\} E(H)={ ijijr(n)(n).}
    • H2r+1,n (n为偶数)
      • 先作H2r,n, 然后对1≦i≦n/2,i与i+n/2连线。
    • H2r+1,n (n为奇数)
      • 先作H2r,n, 然后对1≦i≦(n-1)/2,i与i+(n+1)/2连线。同时,0分别与(n-1)/2和(n+1)/2连线。
定理3 设G是(n, m)单图,若$\delta (G) \ge \left\lfloor { { {\rm{n}} \over {\rm{2}}}} \right\rfloor $,则G连通。
  • 证明:
定理4 设G是(n, m)单图,若对任意正整数k ,有: δ ( G ) ≥ n + k − 2 2 \delta (G) \ge { {n + k - 2} \over 2} δ(G)2n+k2则G是k连通的。
  • 证明:证明:任意删去k-1个顶点,记所得之图为H,则: δ ( H ) ≥ δ ( G ) − ( k − 1 ) ≥ n + k − 2 2 − k + 1 = n − k 2 \delta (H) \ge \delta (G) - (k - 1) \ge { {n + k - 2} \over 2} - k + 1 = { {n - k} \over 2} δ(H)δ(G)(k1)2n+k2k+1=2nk
  • 由于δ(H)是整数,故: δ ( H ) ≥ ⌈ n − k 2 ⌉ = ⌊ n − k + 1 2 ⌋ \delta (H) \ge \left\lceil { { {n - k} \over 2}} \right\rceil = \left\lfloor { { {n - k + 1} \over 2}} \right\rfloor δ(H)2nk=2nk+1
定理5 设G是n阶单图,若 δ ( G ) ≥ ⌊ n 2 ⌋ \delta (G) \ge \left\lfloor { {n \over 2}} \right\rfloor δ(G)2n则有: λ ( G ) = δ ( G ) \lambda (G) = \delta (G) λ(G)=δ(G)
  • 证明:
P66—67 习题3 : 1 2, 13, 14, 20
  • 3.1
  • 3.2
  • 3.13 举例
  • 3.14
  • 3.20 证: n阶简单图 δ ≥ n − 1 \delta \geq n-1 δn1 k = δ k = \delta k=δ

描述连通性的其它参数简介(内容拓展)

敏格尔定理

  • 定义1 设u与v是图G的两个不同顶点,S表示G的一个顶点子集或边子集,如果u与v不在G-S的同一分支上,称S分离u和v。
定理1 (敏格尔1902—1985) (1) 设x与y是图G中的两个不相邻点,则G中分离点x与y的最少点数等于独立的(x, y)路的最大数目;
定理2 (惠特尼1932) 一个非平凡的图G是k (k≧2)连通的,当且仅当G的任意两个顶点u与v间,至少存在k条内点不交的(u ,v)路。
  • 例1 设G是k连通图,S是由G中任意k个顶点构成的集合。若图H是由G通过添加一个新点w以及连接w到S中所有顶点得到的新图,求证:H是k连通的。
定理3 (惠特尼1932) 一个非平凡的图G是k (k≧2)边连通的,当且仅当G的任意两个顶点间至少存在k条边不重的(u ,v)路
  • 证明:

    • 必要性:考虑任意两点 u,v
      • 讨论 相邻 与 不相邻
    • 充分性:
  • 例1 设G是k连通图,S是由G中任意k个顶点构成的集合。若图H是由G通过添加一个新点w以及连接w到S中所有顶点得到的新图,求证:H是k连通的。

推论 对于一个阶至少为3的无环图G,下面三个命题等价。
  • (1) G是2连通的;
  • (2) G中任意两点位于同一个圈上;
  • (3) G无孤立点,且任意两条边在同一个圈上。
  • 证明:

(1)→(2)
G是2连通的,则G的任意两个顶点间存在两条内点不交路P1与P2,显然这两条路构成包含该两个顶点的圈。
(2)→(3)
G无孤立点显然。设e1与e2是G的任意两条边,在e1与e2上分别添加两点u与v得图H,则H是2连通的,由(1)→(2),H的任意两个顶点在同一个圈上,即u与v在同一个圈上,也即e1与e2在同一个圈上。
(3)→(1)
设u与v是无环图G的任意两个不相邻顶点,由于G无孤立点,所以可设e1,e2分别与u, v相关联。由(3),e1,e2在同一个圈上,所以u与v在同一个圈上,因此分离u与v至少要去掉两个顶点,即证明G是2连通的。

第一次上交作业

  • 习题1 : 4,5, 11,12, 17,18.
  • 习题2 : 1,9, 16.
  • 习题3 : 1,3, 7, 12,13.

第四章 欧拉图与Hamilton图

欧拉图及其性质

  • 基本概念
    • 定义一(欧拉图与欧拉回路) 对于连通图G,如果G中存在经过每条边的闭迹,则称G为欧拉图,简称G为E图。欧拉闭迹又称为欧拉环游,或欧拉回路

欧拉图的性质

定理一 下列陈述对于非平凡连通图G是等价的
  1. G是欧拉图
  2. G的顶点度数为偶数
  3. G的边集合能划分为圈
  • 定理一 证明:
    • 1 >> 2: 一进一出
    • 2 >> 2: 减圈法
    • 3 >> 1: 拼圈法
推论1 连通图G是欧拉图当且仅当G的顶点度数为偶。
推论2 连通非欧拉图G存在欧拉迹当且仅当G中只有两个顶点度数为奇数
例题
  • 例题1 证明: 欧拉图 G G G与欧拉图 H H H乘积 G × H G \times H G×H仍然是欧拉图.
    • 先证明d((u,v)) = d(u) + d(v) [邻点 ( u , w ) (u,w) (u,w) w w w d ( u ) d(u) d(u)种,邻点 u ( x , v ) u(x,v) u(x,v), x x x d ( v ) d(v) d(v)种]
    • 证明 G × H G\times H G×H是连通的 (u1,v1)与(u2,v2) 连通
      ( u 1 , v 1 ) > > ( u 1 , v 2 ) > > ( u 2 , v 2 ) (u1,v1)>> (u1,v2) >> (u2,v2) u1,v1>>(u1,v2)>>(u2,v2)
  • 一笔画问题: 欧拉迹存在问题
  • 几笔画问题: 添加几笔成为欧拉图
其他性质:
  • 欧拉图不存在割边
  • 欧拉图举例
    • 完全图 K n K_n Kn,当n为奇时为欧拉图
    • n立方体 Q n Q_n Qn,当n为偶数为欧拉图
    • 完全二部图 K a , b K_{a,b} Ka,b, a , b a,b a,b 均为偶数时为欧拉图
  • 例题2若G是非平凡的欧拉图,则G的每个块也是欧拉图
    • 证明: 对于任一块,欧拉回路跨越两个块,必然经过割点,按割点分割的欧拉回路,是每个块的欧拉回路。
  • 例题 3 设G是非平凡的欧拉图,且v∈V(G)。证明:G的每条以v为起点的迹都能扩展成G的欧拉回路 当且仅当 G‒v是森林
    • 必要性: 非B >> 非A:
      在这里插入图片描述
    • 充分性:
      在这里插入图片描述

Fleury(夫勒里)算法 (求一条具体欧拉环游的方法)

  • 基本思想:尽可能避割边行走
  • 算法:
    • 任意选择一个顶点 v 0 v_0 v0,置 w 0 = v 0 w_0 = v_0 w0=v0
    • 假设迹 w i = v 0 e 1 v 1 . . . e i v i w_i = v_0e_1v_1...e_iv_i wi=v0e1v1...eivi 已经选定,按一下要求从剩余边集合种选取下一条边 e i + 1 e_i+1 ei+1:
      • e i + 1 e_i+1 ei+1 v i v_i vi 相关联
      • 除非没有的边可选择,否则 e i + 1 e_i+1 ei+1 不能是 G i = G − e 1 , . . . , e i G_i = G - {e_1,...,e_i}
  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值