电子科技大学《图论及其应用》复习总结--第一章 图的基本概念

一、重要概念

图、简单图、图的同构、度序列与图序列、偶图、补图与自补图、两个图的联图、两个图的积图

1.1

一个图G定义为一个有序对(V, E),记为G = (V, E),其中

(1)V是一个有限非空集合,称为顶点集或边集,其元素称为顶点或点;

(2)E是由V中的点组成的无序点对构成的集合,称为边集,其元素称为边,且同一点对在E中可出现多次。

注:图G顶点数(或阶数)和边数可分别用符号n(G) 和m(G)表示。连接两个相同顶点的边的条数,叫做边的重数。重数大于1的边称为重边。端点重合为一点的边称为

1.2 简单图

无环无重边的图称为简单图。(除此之外全部都是复合图)

注: 1.顶点集和边集都有限的图称为有限图。只有一个顶点而无边的图称为平凡图。其他所有的图都称为非平凡图。边集为空的图称为空图
​ 2.n阶图:顶点数为n的图,称为n阶图。
​ 3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图

1.3 邻接与关联

顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。

注:1.规定一个顶点与自身是邻接的。

​ 2.顶点u与边e相关联:顶点u是边e的端点。

​ 3.边e1与边e2相邻接:边e1与边e2有公共端点。

1.4 图的同构

​ 设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点 集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,

u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。称G1与G2同构,记为:

G1≌G2

注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。

​ 2、自己空间的理解:通过空间的旋转折叠可以进行形态转换

1.5 完全图、偶图

1、在图论中,完全图是一个简单图,且任意一个顶点都与其它每个顶点有且只有一条边相连接。

2、n个顶点的完全图用Kn表示,常称为n阶完全图。

3、偶图(双图或者二部图):这类图的特征:(1)顶点分成不相交的两部分;(2)任意一条边两个端点分属于两部分顶点。(3)二部图不含有奇圈

4、 完全偶图是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y的每个顶点相连,若|X|=n1,|Y|=n2,则这样的偶图记为 K m , n K_{m,n} Km,n

1、偶图不能有环,偶图可以有重边;2、偶图刻画的是两类事物之间的某种联系状态。

1.6 补图

对于一个简单图G =(V, E),令集合
image-20200804154443250
则称图H =(V,E1\E)为G的补图,记为
image-20200804154615118

几点说明:(1) 只有简单图才能定义补图;

​ (2) n阶简单图和其补图的顶点集合是相同的;

​ (3) n阶简单图任意一对顶点邻接的充分必要条件是这对顶点在其补图中不邻接;

​ (4) n阶简单图的边数与其补图的边数之和等于Kn的边数;

自补图:若简单图G与其补图同构,则称G为自补图

自补图的性质:(1)若n阶图G是自补的(即 G ≅ G G\cong G GG n = 0 , 1 ( m o d    4 ) n=0,1(mod \;4) n=0,1(mod4)

1.7 图的度序列

一个图G的各个点的度d1, d2,…, dn构成的非负整数组(d1, d2,…, dn)称为G的度序列

注:

重:非负整数组(d1, d2,…., dn)是图的度序列的充分必要条件是**:∑di 为偶数**。度序列的判定问题为重点!

​ 1、一个图的度序列与序列中元素排列无关;

​ 2、给定一个图,只对应唯一一个度序列;

​ 3、同构的图具有相同的度序列。

1.8 图的图序列

一个非负数组如果是某简单图的度序列,称它为可图序列,简称图序列

定理4 非负整数组

image-20200804162813079

是图序列的充分必要条件是:

image-20200804162825851

是图序列。

π1是由π的删除第一个元素d1之后的前d1个元素分别减一后得到的序列。

1.8 图的频序列

定理6 一个简单图G的n个点的度不能互不相同.

定理7 一个n阶图G和它的补图有相同的频序列。

1.9 k-正则图

设G = (V, E)为简单图,如果对所有 v∈V ,有d (v) = k,称图G为k-正则图 .

性质:k-正则偶图的两个顶点子集包含顶点个数相等。

二、子图与图运算

2.1 子图

V’∈V,由两个端点均在V’中的边集组成的图,称为点导出子图,记为:G[V’]

E’∈E,由E’中边的所有端点为顶点集组成的图,称为**边导出子图,**记为:G[E’]

如果图G的一个子图包含G的所有顶点,称该子图为G的一个生成子图

定理1 简单图G=(n, m) 的所有生成子图个数为2^m.

2.2 图运算

2.2.1 图的删点、删边运算

注意:删点时会去掉该点以及与该关联的所有边

2.2.2 图的并运算

​ 记为 G 1 ⋃ G 2 G_1\bigcup G_2 G1G2,顶点集为 V ( G 1 ) ⋃ V ( G 2 ) V(G_1)\bigcup V(G_2) V(G1)V(G2),边集为 E ( G 1 ) ⋃ E ( G 2 ) E(G_1)\bigcup E(G_2) E(G1)E(G2),如果 G 1 G_1 G1 G 2 G_2 G2是不想交的,有时就记并图为 G 1 + G 2 G_1+ G_2 G1+G2

2.2.3 图的交运算

​ 与并运算类似进行定义

2.2.4 图的差运算

​ 设G1,G2是两个图,G1与G2的差是指从G1中删去G2中的边得到的新图。记为G1-G2.

图的对称差运算(或环和运算)

​ 设G1,G2是两个图,G1与G2的对称差定义为:
G 1 Δ G 2 = ( G 1 ∪ G 2 ) − ( G 1 ∩ G 2 ) G_1 \Delta G_2 = (G_1∪ G_2) - (G_1 ∩ G_2) G1ΔG2=(G1G2)(G1G2)

图的联运算

​ 设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2中的每个顶点连接,这样得到的新图称为G1与G2的联图。记为 :
G 1 ∨ G 2 G_1 \vee G_2 G1G2

图的积图

​ 设 G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1 = (V_1,E_1),G_2=(V_2,E_2) G1=(V1,E1),G2=(V2,E2)是两个图。对点集 V = V 1 × V 2 V=V_1\times V_2 V=V1×V2的任意两个点u=(u1,u2)与v=(v1,v2),当(u1=v1和u2adjv2)或(u2=v2和u1adjv1)时,把u与v相连。如此得到的新图称为G1与G2的积图。记为:
G = G 1 × G 2 G=G_1\times G_2 G=G1×G2
image-20200804172042414

图的合成图

​ 设 G 1 = ( V 1 , E 1 ) , G 2 = ( V 2 , E 2 ) G_1 = (V_1,E_1),G_2=(V_2,E_2) G1=(V1,E1),G2=(V2,E2)是两个图。对点集 V = V 1 × V 2 V=V_1\times V_2 V=V1×V2的任意两个点u=(u1,u2)与v=(v1,v2),当(u1adjv1)或(u1=v1和u2adjv2)时,把u与v相连。如此得到的新图称为G1与G2的合成图。记为
G = G 1 [ G 2 ] G=G_1[G_2] G=G1[G2]
image-20200804172732305

三、路与图的连通性

3.1 途经、迹、路

  • **G 的一条途径(或通道或通路)**是指一个有限非空序列:w= v0 e1 v1 e2 v2…ek vk,它的项交替地为顶点和边,使得ei的端点是vi-1和vi.(1≤i≤k).

    ​ 途径中边数称为途径的长度;v0,vk分别称为途径的起点与终点,其余顶点称为途径的内部点

  • 边不重复的途径称为图的一条迹。

  • 顶点不重复的途径称为图的一条路。

3.2 连通性

​ 图G中点u与v说是连通的,如果u与v间存在途径。否则称u与v不连通。容易知道:点的连通关系是等价关系。

3.3 连通图与连通分支

(1) 如果图G中任意两点是连通的,称G是连通图,否则,称G是非连通图

(2)非连通图中每一个极大连通部分,称为G的连通分支。G的连通分支的个数,称为G的分支数,记为 w ( G ) w(G) w(G)

3.4 图的直径与半径

d (u, v) 图中顶点u与v的距离:u与v间最短路的长度称为u与v间距离。

直径:定义为max d(u,v),其中u,v是两个顶点。也就是图中距离最远的两个点。

ϵ(u) 顶点的离心率,对于任意一个顶点u,它的离心率定义为max d(u,v)

半径:一个图的半径就是min ϵ(u) 其中u是顶点。

3.5 连通性性质

定理1:若图G不连通,则其补图连通。

定理2: 一个图是偶图当且当它不包含奇圈。


四、最短路及其算法

4.1 图的代数表示及其特征

  • 图的邻接矩阵

    性质:

    ​ (1)非负性与对称性。

    ​ (2) 同一图的不同形式的邻接矩阵是相似矩阵。

    ​ (3) 如果G为简单图,则A(G)为布尔矩阵;行和(列和)等于对应顶点的度数;矩阵元素总和为图的总度数,也就是G的边数的2倍。

    ​ (4) G连通的充分必要条件是:A(G)不能与如下矩阵相似:
    KaTeX parse error: Undefined control sequence: \matrix at position 9: \left( \̲m̲a̲t̲r̲i̲x̲{ A_{11} & 0\\ …
    ​ (5) 定理1 设 A k ( G ) = ( a i j ( k ) ) A^k(G)=(a_{ij}^{\quad(k)}) Ak(G)=(aij(k)),则 a i j ( k ) a_{ij}^{\quad(k)} aij(k)表示顶点vi到顶点vj的途径长度为k的途径条数。

    推论: (1) A 2 A^2 A2的元素 a i i ( 2 ) a_{ii}^{\quad(2)} aii(2)是vi的度数, A 3 A^3 A3的元素 a i i ( 3 ) a_{ii}^{\quad(3)} aii(3)是含vi的三角形个数的2倍。

  • 图的关联矩阵

image-20200804203523089

性质

​ (1) 关联矩阵的元素为0,1或2;

​ (2) 关联矩阵的每列和为2;每行的和为对应顶点度数.

4.2 最短路算法

顶点标号法:

​ 1959年,旦捷希(Dantjig)发现了在赋权图中求由点a到点b的最短路好算法,称为顶点标号法。

image-20200804203904357image-20200804203914191

邻接谱、邻接代数与图空间

1、邻接谱

图的邻接矩阵A(G)的特征值及其重数,称为G的邻接谱。

完全图Kn的邻接谱为:

image-20200808174430030

定义2 若两个非同构的n阶图具有相同的谱,则称它们是同谱图

定理1 设单图A(G)的谱为:

image-20200808174558940

则:

image-20200808174612507

定理2 设λ是单图G = (n, m)的任意特征值,则:

image-20200808185331660

2、邻接代数

定义3:设A是无环图G的邻接矩阵,则:

image-20200808185840890

定理3(图的邻接代数的维数特征):G为n阶连通无环图,则:

image-20200808185902921

定理4:集合:

image-20200808190026205

对于图的对称差运算和数乘运算:

image-20200808190039589

来说作成数域 F = { 0, 1 }上的m维向量空间。

六、极图

定义1 若简单图G的点集V有一个划分

image-20200818143758731

​ 且所有Vi非空,Vi内的点均不连通,则称G是一个l部图

定义2 如果在一个l部图G中, ∣ V i ∣ = n i |V_i|=n_i Vi=ni,任何两点$u\in V_i,v\in V_j,i\neq j $, i,j=1,2,…, l均邻接,则称G为完全l部图。

定义3 如果在一个n个点的完全l部图G中,

image-20200818143904328

则称Gn完全l几乎等部图,记为Tl,n。|V1| = |V2| = … = |Vl | 的完全l几乎等部图称为完全l等部图

定理19 连通偶图的2部划分是唯一的。

定理20 n阶完全偶图 K n 1 , n 2 K_{n1,n2} Kn1,n2的边数m = n1n2 条边,且有 m < ⌊ n 2 4 ⌋ m < \lfloor \frac{n^2}{4} \rfloor m<4n2

定理21 nl部图G有最多边数的充要条件是 G ≅ T l , n G \cong T_{l,n} GTl,n

定义4GH是两个n阶图,若存在 V ( G ) V(G) V(G) V ( H ) V(H) V(H)的一个一一对应 μ \mu μ,使对任何点 v ∈ V ( G ) v\in V(G) vV(G),有
d G ( V ) ≤ d H ( μ ( v ) ) d_G(V)\leq d_H(\mu (v)) dG(V)dH(μ(v))
则称H度序列优于G (简称H度优于G),或G度序列弱于H (简称G度弱于H)。

定理22n阶简单图G不包含 K l + 1 K_{l+1} Kl+1,则G度弱于某个完全l部图H。且若G具有与H相同的度序列,则 G ≅ H G \cong H GH

定理23 (Turán 托兰定理)若G是简单图,并且不包含 K l + 1 K_{l+1} Kl+1,则边数m(G)≤m( T l , n T_{l,n} Tl,n)。此外,仅当 G = T l + 1 G=T_{l+1} G=Tl+1时有 m ( G ) = m ( K l , n ) m(G)=m(K_{l,n}) m(G)=m(Kl,n)。托兰定理指出:不含 K l + 1 K_{l+1} Kl+1极值图是完全l几乎等部图。

定理24A={x1, x2,…, xn}为任意一个直径为1的平面点集,则A中距离大于 2 2 \frac{\sqrt{2}}{2} 22 的点对的最大数目为 ⌊ n 2 3 ⌋ \lfloor \frac{n^2}{3} \rfloor 3n2。并且对每个n,存在直径为1的点集A* = {x1, x2,…, xn},它恰有 ⌊ n 2 3 ⌋ \lfloor \frac{n^2}{3} \rfloor 3n2个点对,其距离大于 2 2 \frac{\sqrt{2}}{2} 22

总结:常用符号说明

n(G) 图G顶点数(或阶数

m(G) 图G边数

d (v) 顶点v的

d (u, v) 图中顶点u与v的距离:u与v间最短路的长度称为u与v间距离。

ϵ(u) 顶点的离心率,对于任意一个顶点u,它的离心率定义为max d(u,v)

δ(G) 表示图G的最小度

Δ(G) 表示图G的最大度

K n K_n Kn 表示n阶完全图

K m , n K_{m,n} Km,n 表示完全二部图

Q n Q_n Qn 表示n阶超立方体

w ( G ) w(G) w(G) 表示G的分支数

G 1 ≅ G 2 G_1\cong G_2 G1G2 表示 G 1 G_1 G1 G 2 G_2 G2 同构

T l , n T_{l,n} Tl,n 表示n阶完全l几乎等部图

总结:常用性质定理

1、握手定理:

​ 图G= (V, E)中所有顶点的度的和等于边数m的2倍,即:
∑ v ∈ V d ( v ) = 2 m \sum_{v∈V}{d(v)}=2m vVd(v)=2m
推论1:在任何图中,奇点个数为偶数。

推论2:正则图的阶数和度数不同时为奇数 。

2、偶图的判定定理

​ 一个图是偶图当且当它不包含奇圈

3、“超立方体”采用积图来递归构造方法

Q n = K 2 × Q ( n − 1 ) Q_n = K_2 \times Q_(n-1) Qn=K2×Q(n1)

超立方体 是n度正则二部图,顶点数为 2 n 2^n 2n,边数为 n × 2 n − 1 n\times 2^{n-1} n×2n1

每个n方体都有完美匹配(n大于等于1)

4、最短路算法(顶点标号法)

5、度序列判定

非负整数组(d1, d2,…., dn)是图的度序列的充分必要条件是**:∑di 为偶数**

6、图序列判定

定理4 非负整数组

image-20200804162813079

是图序列的充分必要条件是:

image-20200804162825851

是图序列。

π1是由π的删除第一个元素d1之后的前d1个元素分别减一后得到的序列。

7、自补图性质

自补图的性质:(1)若n阶图G是自补的(即 G ≅ G ‾ G\cong \overline{G} GG,则 n = 0 , 1 ( m o d 4 ) n=0,1(mod\quad4) n=0,1(mod4)

8、托兰定理应用

定理24A={x1, x2,…, xn}为任意一个直径为1的平面点集,则A中距离大于 2 2 \frac{\sqrt{2}}{2} 22 的点对的最大数目为 ⌊ n 2 3 ⌋ \lfloor \frac{n^2}{3} \rfloor 3n2。并且对每个n,存在直径为1的点集A* = {x1, x2,…, xn},它恰有 ⌊ n 2 3 ⌋ \lfloor \frac{n^2}{3} \rfloor 3n2个点对,其距离大于 2 2 \frac{\sqrt{2}}{2} 22

总结:一些结论

  • 单图一定存在度数相同的顶点

  • 一个简单图G的n个点的度不能互不相同.

  • 一个n阶图G和它的补图有相同的频序列。

  • n n n阶完全偶图 K n 1 , n 2 K_{n1,n2} Kn1,n2的边数 m = n 1 n 2 m=n_1n_2 m=n1n2,且有 m < ⌊ n 2 4 ⌋ m < \lfloor \frac{n^2}{4} \rfloor m<4n2

  • (1)两个n阶图可能不存在度弱关系:如(1,2,2,7)与(3,1,4,6)就不存在度弱关系;(2)若G度弱于H,一定有 m ( G ) < m ( H ) m(G)<m(H) m(G)<m(H),但是,反过来不一定

  • k正则二部图(k正则偶图)G的相关结论:

(1)若k≥2,则G无割边

​ (2)存在完美匹配

​ (3)可1-因子化

  • 偶图相关结论

    • 平面图G的对偶图G*也是平面图,且G*的点数 = G的面数;G*的边数 = G的边数;G*的面数 = G的点数 (G连通);d(vi*) = deg ( fi )
    • 设G*是平面图G的对偶图,则G*必连通
    • 假定G是平面图,则(G*)* = G当且仅当G是连通图
    • 若G1≌G2,在一般条件下,只存在非同构的对偶图G1*与G2*
    • 偶图的补图是完美图
  • 完全图Kn相关结论

    • 点色数为n
    • 边色数为:n(n为奇数时);n-1(n为偶数时)
    • 点连通度为n-1
    • 边连通度为n-1
    • 是临界图
    • 是唯一可着色图
  • 关联矩阵

    • 关联矩阵的每列和为2
    • 其行和为对应顶点的度数
  • 完全图Kn的邻接谱为:

image-20200808174430030

  • 21
    点赞
  • 141
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值