P1141 01迷宫(BFS)

 

题目描述

有一个仅由数字00与11组成的n \times nn×n格迷宫。若你位于一格0上,那么你可以移动到相邻44格中的某一格11上,同样若你位于一格1上,那么你可以移动到相邻44格中的某一格00上。

你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。

输入输出格式

输入格式:

 

第11行为两个正整数n,mn,m。

下面nn行,每行nn个字符,字符只可能是00或者11,字符之间没有空格。

接下来mm行,每行22个用空格分隔的正整数i,ji,j,对应了迷宫中第ii行第jj列的一个格子,询问从这一格开始能移动到多少格。

 

输出格式:

 

mm行,对于每个询问输出相应答案。

 

输入输出样例

输入样例#1: 复制

2 2
01
10
1 1
2 2

输出样例#1: 复制

4
4

说明

所有格子互相可达。

对于20\%20%的数据,n≤10n≤10;

对于40\%40%的数据,n≤50n≤50;

对于50\%50%的数据,m≤5m≤5;

对于60\%60%的数据,n≤100,m≤100n≤100,m≤100;

对于100\%100%的数据,n≤1000,m≤100000n≤1000,m≤100000。

联通块思想,即这这个方块当中它们能移动的格子是相同的,所以我们就可以设一个数组记忆,已经搜索过,就无需再一次搜索了。

BFS

#include<bits/stdc++.h>
#define M 1010
using namespace std;

struct node
{
	int x,y;
};
char maze[M][M];
int n,m,k,vis[M][M],by[M*M];
int dx[4] = {0,0,1,-1};
int dy[4] = {1,-1,0,0};

bool check(node dd,int x,int y)
{
	if (1<=x && x<=n && 1<=y && y<=n &&
	maze[x][y]!=maze[dd.x][dd.y] && !vis[x][y])
		return 1;
	else return 0;
}

int bfs(node dd)
{
	int s = 1;
	queue<node> q;
	vis[dd.x][dd.y] = k;
	q.push(dd);
	while (!q.empty())
	{
		node md = q.front();
		q.pop();
		for (int i=0;i<4;i++)
		{
			int ddx = md.x + dx[i];
			int ddy = md.y + dy[i];
			if (check(md,ddx,ddy))
			{
				s++;
				node zz;
				vis[ddx][ddy] = k;
				zz.x = ddx,zz.y = ddy;
				q.push(zz); 
			}
		}
	} 
	return s;
}

int main()
{
	//freopen("in.txt","r",stdin);
	int i,j;
	cin>>n>>m;
	for (i=1;i<=n;i++)
		for (j=1;j<=n;j++)
			cin>>maze[i][j];
	for (i=0;i<m;i++)
	{
		node dd;
		cin>>dd.x>>dd.y;
		if (by[vis[dd.x][dd.y]]) 
			cout<<by[vis[dd.x][dd.y]]<<endl;
		else
		{
			k++;
			by[k] = bfs(dd);
			cout<<by[k]<<endl;
		}
	}
	return 0;
}

DFS 

#include<bits/stdc++.h>
#define M 1010
using namespace std;

struct node
{
	int x,y;
};
char maze[M][M];
int n,m,k,ans,vis[M][M],by[M*M];
int dx[4] = {0,0,1,-1};
int dy[4] = {1,-1,0,0};

bool check(node dd,int x,int y)
{
	if (1<=x && x<=n && 1<=y && y<=n &&
	maze[x][y]!=maze[dd.x][dd.y] && !vis[x][y])
		return 1;
	else return 0;
}
void dfs(node dd)
{
	ans++;
	vis[dd.x][dd.y] = k;
	for (int i=0;i<4;i++)
		{
			int ddx = dd.x + dx[i];
			int ddy = dd.y + dy[i];
			if (check(dd,ddx,ddy))
			{
				node zz;
				zz.x = ddx,zz.y = ddy;
				dfs(zz);
			}
		}
} 

int main()
{
	//freopen("in.txt","r",stdin);
	node dd;
	int i,j;
	cin>>n>>m;
	for (i=1;i<=n;i++)
		for (j=1;j<=n;j++)
			cin>>maze[i][j];
	k = ans = 0;
	for (i=1;i<=n;i++)
		for (j=1;j<=n;j++)
		{
			if (!vis[i][j])
			{
				k++;
				dd.x = i,dd.y = j;
				dfs(dd);
				by[k] = ans;
				ans = 0;
			}
		}
	for (i=0;i<m;i++)
	{
		cin>>dd.x>>dd.y;
		cout<<by[vis[dd.x][dd.y]]<<endl;
	}
	return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值