题目描述
有一个仅由数字00与11组成的n \times nn×n格迷宫。若你位于一格0上,那么你可以移动到相邻44格中的某一格11上,同样若你位于一格1上,那么你可以移动到相邻44格中的某一格00上。
你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。
输入输出格式
输入格式:
第11行为两个正整数n,mn,m。
下面nn行,每行nn个字符,字符只可能是00或者11,字符之间没有空格。
接下来mm行,每行22个用空格分隔的正整数i,ji,j,对应了迷宫中第ii行第jj列的一个格子,询问从这一格开始能移动到多少格。
输出格式:
mm行,对于每个询问输出相应答案。
输入输出样例
输入样例#1: 复制
2 2
01
10
1 1
2 2
输出样例#1: 复制
4
4
说明
所有格子互相可达。
对于20\%20%的数据,n≤10n≤10;
对于40\%40%的数据,n≤50n≤50;
对于50\%50%的数据,m≤5m≤5;
对于60\%60%的数据,n≤100,m≤100n≤100,m≤100;
对于100\%100%的数据,n≤1000,m≤100000n≤1000,m≤100000。
联通块思想,即这这个方块当中它们能移动的格子是相同的,所以我们就可以设一个数组记忆,已经搜索过,就无需再一次搜索了。
BFS
#include<bits/stdc++.h>
#define M 1010
using namespace std;
struct node
{
int x,y;
};
char maze[M][M];
int n,m,k,vis[M][M],by[M*M];
int dx[4] = {0,0,1,-1};
int dy[4] = {1,-1,0,0};
bool check(node dd,int x,int y)
{
if (1<=x && x<=n && 1<=y && y<=n &&
maze[x][y]!=maze[dd.x][dd.y] && !vis[x][y])
return 1;
else return 0;
}
int bfs(node dd)
{
int s = 1;
queue<node> q;
vis[dd.x][dd.y] = k;
q.push(dd);
while (!q.empty())
{
node md = q.front();
q.pop();
for (int i=0;i<4;i++)
{
int ddx = md.x + dx[i];
int ddy = md.y + dy[i];
if (check(md,ddx,ddy))
{
s++;
node zz;
vis[ddx][ddy] = k;
zz.x = ddx,zz.y = ddy;
q.push(zz);
}
}
}
return s;
}
int main()
{
//freopen("in.txt","r",stdin);
int i,j;
cin>>n>>m;
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
cin>>maze[i][j];
for (i=0;i<m;i++)
{
node dd;
cin>>dd.x>>dd.y;
if (by[vis[dd.x][dd.y]])
cout<<by[vis[dd.x][dd.y]]<<endl;
else
{
k++;
by[k] = bfs(dd);
cout<<by[k]<<endl;
}
}
return 0;
}
DFS
#include<bits/stdc++.h>
#define M 1010
using namespace std;
struct node
{
int x,y;
};
char maze[M][M];
int n,m,k,ans,vis[M][M],by[M*M];
int dx[4] = {0,0,1,-1};
int dy[4] = {1,-1,0,0};
bool check(node dd,int x,int y)
{
if (1<=x && x<=n && 1<=y && y<=n &&
maze[x][y]!=maze[dd.x][dd.y] && !vis[x][y])
return 1;
else return 0;
}
void dfs(node dd)
{
ans++;
vis[dd.x][dd.y] = k;
for (int i=0;i<4;i++)
{
int ddx = dd.x + dx[i];
int ddy = dd.y + dy[i];
if (check(dd,ddx,ddy))
{
node zz;
zz.x = ddx,zz.y = ddy;
dfs(zz);
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
node dd;
int i,j;
cin>>n>>m;
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
cin>>maze[i][j];
k = ans = 0;
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
{
if (!vis[i][j])
{
k++;
dd.x = i,dd.y = j;
dfs(dd);
by[k] = ans;
ans = 0;
}
}
for (i=0;i<m;i++)
{
cin>>dd.x>>dd.y;
cout<<by[vis[dd.x][dd.y]]<<endl;
}
return 0;
}