P1141 01迷宫

P1141 01迷宫

题目:

有一个仅由数字0与1组成的n×n格迷宫。若你位于一格0上,那么你可以移动到相邻4格中的某一格1上,同样若你位于一格1上,那么你可以移动到相邻4格中的某一格0上。

你的任务是:对于给定的迷宫,询问从某一格开始能移动到多少个格子(包含自身)。

注意!!!

这道题

是一道

典型的

迷宫题

递归解决不多说

但是

有两点

注意事项:

请注意一下题目

题目上说的是

从某一个点开始

移动到多少个棋子

可以有多条路线

而且是多条路线的总和

所以

这道题只要搜索

不要回溯

只要写好边界条件

无限递归

就可以了

这个数本身

也要算上一个

所以每个数

至少也走了一步

解析:

这道题

我们可以定义一个数组f

用来判断

定义一个字符数组s

用来输入

定义一个数组ans

用来记录并输出

我们可以将

接着写好条件

递归就可以了

但是

一定要注意

如果在0

只能走1

如果在1

只能走0

所以

还要判断一下是否不同

伪代码详解:
void ddd(int x1,int y1,int z,int xc)
{
	if(不符合条件)  return;
	b[x1][y1]=xc;
	sc[xc]++;保存 
	ddd(x1+1,y1,!z,xc);向上方递归
	ddd(x1-1,y1,!z,xc);向下方递归
	ddd(x1,y1-1,!z,xc);向左边递归
	ddd(x1,y1+1,!z,xc);向右边递归
}
代码:
#include<bits/stdc++.h>
#include<iostream>
#include<cstdlib>
#include<cstdio>
using namespace std;
int n,m,x,y,b[1001][1001],g,sc[100001];//b数组用于判断是否走过(值=-1)以及是在第几次询问时走的。sc数组代表该次询问总步数 
char a1[1001][1001];//用于输入 
void ddd(int x1,int y1,int z,int xc)//四个参数分别为横坐标、纵坐标、当前的值(0或1)、xc表示是第几次询问 
{
	if(x1<0||x1>=n||y1<0||y1>=n||b[x1][y1]!=(-1)||a1[x1][y1]-'0'!=z) return;
	//退出条件:1、越界;2、已访问过(b[i][j]!=-1);3、当前的值与上一个值一样
	//(因为在下面的递归中条件设为!z(即不一样,0变成1,1变成0) ,在这里再否定一下,双重否定为肯定,就是一样! 
    b[x1][y1]=xc;//标记该点已经被第xc次询问走过 
	sc[xc]++; //第xc次询问的步数加一步。 
	ddd(x1-1,y1,!z,xc);//“!z”表示当前值必须与上一个值不同! 
	ddd(x1+1,y1,!z,xc);
	ddd(x1,y1-1,!z,xc);
	ddd(x1,y1+1,!z,xc);
}
int main()
{
	//freopen("p1141.in","r",stdin);
    //freopen("p1141.out","w",stdout); 
	memset(b,-1,sizeof(b));  // b数组统一赋初值 
	cin>>n>>m;
	for(int i=0;i<=n-1;i++)
	for(int j=0;j<=n-1;j++)
	cin>>a1[i][j];
	for(int i=0;i<=m-1;i++)
	{
		cin>>x>>y;
		x--;y--;//因为数组默认都是从0开始的,而题目输出给定的要求是“第i行第j列”中的i和j明显从1开始,所以,一开始横纵坐标全部回调1
		//为什么不能直接从第1行第1列开始输入?因为第0行第0列的值不好判断,如果从1行第1列开始输入,那么第0行第0列的初始值不论是什么都与其他格子的值不同,这样就不好判断了 
		if(b[x][y]==-1) ddd(x,y,a1[x][y]-'0',i);//如果这个格子没有被走过,则开始DFS 
		else sc[i]=sc[b[x][y]];	//如果这个格子已经被走过,则直接输出走过的值,因为所有走过的都是相通的。 
	}
	for(int i=0;i<=m-1;i++) cout<<sc[i]<<endl;
	return 0;
}
求解迷宫问题可以使用深度优先搜索(DFS)或广度优先搜索(BFS算法。 以DFS为例,可以用递归函数来实现。具体步骤如下: 1. 定义一个二维数组maze表示迷宫地图,元素值为0表示该位置可以通行,为1表示该位置为障碍物不可通行。 2. 定义一个二维数组visited表示迷宫地图中的每个位置是否已经访问过,初始值为False。 3. 定义一个函数DFS(x, y)表示从坐标为(x, y)的位置开始搜索迷宫。如果到达终点位置,则输出路径,并结束搜索。否则,按照上下左右的顺序依次判断相邻位置是否可以通行,如果可以通行且未被访问过,则递归调用DFS函数继续搜索。 4. 在程序主函数中调用DFS函数并传入起点坐标。 以下是程序实现的示例代码: ```python # 定义迷宫地图 maze = [[0, 1, 0, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 0, 0, 1, 0]] # 定义迷宫地图的大小 n = len(maze) m = len(maze[0]) # 定义visited数组 visited = [[False for j in range(m)] for i in range(n)] # 定义搜索函数 def DFS(x, y): # 到达终点位置 if x == n-1 and y == m-1: print("找到一条路径") return # 标记该位置已被访问 visited[x][y] = True # 按上下左右的顺序依次判断相邻位置是否可以通行 if x > 0 and not visited[x-1][y] and maze[x-1][y] == 0: DFS(x-1, y) # 向上搜索 if x < n-1 and not visited[x+1][y] and maze[x+1][y] == 0: DFS(x+1, y) # 向下搜索 if y > 0 and not visited[x][y-1] and maze[x][y-1] == 0: DFS(x, y-1) # 向左搜索 if y < m-1 and not visited[x][y+1] and maze[x][y+1] == 0: DFS(x, y+1) # 向右搜索 # 取消该位置的标记 visited[x][y] = False # 调用搜索函数并传入起点坐标 DFS(0, 0) ``` 以上代码输出结果为: ``` 找到一条路径 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值