GAN的训练过程中面临一些挑战和常见问题:
一、模式崩溃(Mode Collapse)
what:模式崩溃是指GAN训练中生成器网络只能生成有限的样本多样性,而无法涵盖数据分布中的所有模式。
result:这可能导致生成器输出的样本过于相似或缺乏多样性。模式崩溃通常发生在判别器网络过于强大或训练数据集非常复杂时。
how to solve:
使用多个判别器:通过引入多个判别器来提供更多的反馈信号,可以帮助生成器更好地捕捉数据分布中的多个模式。
增加噪声:向输入数据或潜在空间添加噪声可以增加样本的多样性,促进生成器生成更多样化的输出。
引入正则化项:通过在生成器和判别器的损失函数中添加正则化项,可以鼓励模型生成更多样的样本。
二、梯度消失问题gradient vanishing
即是利用误差反向传播(back propagation,BP)算法对深度神经网络进行训练时,梯度后向传播到浅层网络时基本不能引起数值的扰动,最终导致神经网络收敛很慢甚至不能收敛。GAN存在梯度消失的问题,并且在判别器训练得越好的时候,生成器梯度消失得越严重。
生成器在训练的过程中得不到任何的梯度信息,出现梯度消失的现象。