最近学习了3种常见的统计学方法:主成分分析法(PCA)、熵值法、层次分析法(AHP,又称专家打分法)。都可以用来计算指标(或属性)的权重,只有主成分分析法可以降维。PCA/熵值法都需要有对应的样本数据,比如10个样本,每个样本5个属性,共10*5个数据,才能应用;而层次分析法(AHP)不需要有数据,只需要专家对各个指标之间的相对重要关系进行打分,就能计算各指标权重,各指标权重就是构造的比较矩阵的特征向量(归一化后的),如果是多层,那就逐层计算,最后各层权重相乘得到最终权重。
主成分分析法:本质上就是将较多个的具有一定相关性的指标或属性简化为几个不相关的主成分,这些主成分由各指标或属性线性组合而成,组合的权重就是特征向量。能够实现浓缩凝练数据,对数据进行降维的作用。主成分分析可以同时计算主成分权重(常见用法)和各指标权重。选择特征根大的主成分,以特征根代表方差贡献大小,并计算方差贡献率。
spss和MATLAB中都可以实现主成分分析。
主成分分析的步骤如下:
(1)数据标准化处理(S),注意不是归一化,标准化的方法是xi_new=(xi-mean(x))/标准差,注意是每个指标或者属性单独标准化,因为各个指标或属性的数值意义不一样,混在一起标准化显然是不合理的。
(2)求样本的协方差矩阵(cov)
3种常见的统计学方法
最新推荐文章于 2024-07-28 13:54:43 发布