凸优化学习-(二十六)无约束优化算法——牛顿法、拟牛顿法及无约束算法总结

本文深入探讨了凸优化中的牛顿法与拟牛顿法,详细解析了算法的推导过程,收敛性分析,以及在不同阶段的特性表现。同时,文章总结了无约束优化算法的适用场景,为读者提供了选择最适用算法的指导。

凸优化学习

学习笔记

一、牛顿法(Newton’s method\text{Newton's method}Newton’s method

1.推导

在最速下降法中,我们的方向:
dk=arg⁡min⁡v{ f(xk+v)∣∥v∥=1} d^k=\arg\min_v\lbrace f(x^k+v)\big|\|v\|=1\rbrace dk=argvmin{ f(xk+v)v=1}
其中我们是对f(xk+v)f(x^k+v)f(xk+v)进行一阶泰勒展开来求dkd^kdk的,那么我们对其进行二阶泰勒展开,就得到了牛顿法:
dk=arg⁡min⁡v{ f(x)+∇fT(x)v+12vT∇2f(xk)v} d^k=\arg\min_v\lbrace f(x)+\nabla f^T(x)v+\frac 1 2 v^T\nabla^2f(x^k)v\rbrace dk=argvmin{ f(x)+fT(x)v+21vT2f(xk)v}
这就变成了一个关于vvv的二次函数,很容易求得vv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值