凸优化学习
学习笔记
一、牛顿法(Newton’s method\text{Newton's method}Newton’s method)
1.推导
在最速下降法中,我们的方向:
dk=argminv{
f(xk+v)∣∥v∥=1} d^k=\arg\min_v\lbrace f(x^k+v)\big|\|v\|=1\rbrace dk=argvmin{
f(xk+v)∣∣∥v∥=1}
其中我们是对f(xk+v)f(x^k+v)f(xk+v)进行一阶泰勒展开来求dkd^kdk的,那么我们对其进行二阶泰勒展开,就得到了牛顿法:
dk=argminv{
f(x)+∇fT(x)v+12vT∇2f(xk)v} d^k=\arg\min_v\lbrace f(x)+\nabla f^T(x)v+\frac 1 2 v^T\nabla^2f(x^k)v\rbrace dk=argvmin{
f(x)+∇fT(x)v+21vT∇2f(xk)v}
这就变成了一个关于vvv的二次函数,很容易求得vv

本文深入探讨了凸优化中的牛顿法与拟牛顿法,详细解析了算法的推导过程,收敛性分析,以及在不同阶段的特性表现。同时,文章总结了无约束优化算法的适用场景,为读者提供了选择最适用算法的指导。
最低0.47元/天 解锁文章
2830

被折叠的 条评论
为什么被折叠?



