优化问题综述(二)其他无约束最优化算法

无约束最优化问题的解法

我们希望得到 minxf(x) m i n x f ( x ) ,我们把 f(x) f ( x ) 泰勒展开可得

f(x+Δ)=f(x)+f(x)TΔ+12ΔT2f(x)Δ+O(Δ3) f ( x + Δ ) = f ( x ) + ∇ f ( x ) T Δ + 1 2 Δ T ∇ 2 f ( x ) Δ + O ( Δ 3 )

牛顿法

2f(x) ∇ 2 f ( x ) 已知时,对 f(x+Δ) f ( x + Δ ) 求导,令倒数为0,可得

Δ=[2f(x)]1f(x) Δ = − [ ∇ 2 f ( x ) ] − 1 ∇ f ( x )

那么我们可以通过迭代公式

xt+1=xt[2f(x)]1f(x) x t + 1 = x t − [ ∇ 2 f ( x ) ] − 1 ∇ f ( x )

求解最优化问题,有时我们加个小于1的阻尼系数来增加算法的稳定性(阻尼牛顿法):

xt+1=xtη[2f(x)]1f(x) x t + 1 = x t − η [ ∇ 2 f ( x ) ] − 1 ∇ f ( x )

牛顿法的缺点也很明显:

  • 2f(x) ∇ 2 f ( x ) 不容易求
  • 2f(x) ∇ 2 f ( x ) 的逆不容易求
  • 2f(x) ∇ 2 f ( x ) 太占空间

拟牛顿法

由牛顿法可知, x x 每步的前进方向 Δ 满足 f(x)=Δ2f(x) ∇ f ( x ) = Δ ∇ 2 f ( x ) ,且 f(xt+1)f(xt)+2f(xt)[xt+1xt] ∇ f ( x t + 1 ) ≈ ∇ f ( x t ) + ∇ 2 f ( x t ) [ x t + 1 − x t ]
替代变量 Bt+1=2f(xt),Dt+1=[2f(xt)]1 B t + 1 = ∇ 2 f ( x t ) , D t + 1 = [ ∇ 2 f ( x t ) ] − 1 ,再令 st=xt+1xt,yt=f(xt+1)f(xt) s t = x t + 1 − x t , y t = ∇ f ( x t + 1 ) − ∇ f ( x t ) ,那么有:

  • yt=Bt+1st y t = B t + 1 s t
  • st=Dt+1yt s t = D t + 1 y t

Dt+1=Dt+ΔDt=Dt+Pt+Qt D t + 1 = D t + Δ D t = D t + P t + Q t ,那么

Dt+1yt=Dtyt+Ptyt+Qtyt D t + 1 y t = D t y t + P t y t + Q t y t

Ptyt=Dtyt,Qtyt=st P t y t = − D t y t , Q t y t = s t ,我们有

Pt=DtytyTtDTtyTtDTtyt,Q
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值