主要学习了下主席树
参考博客:https://www.cnblogs.com/oyking/p/3230296.html
主席树就是多个线段树合起来,是一种高级数据结构
以本题为例
求区间第k大
那么我们就采用可持久化线段树(就是主席树)
先讲一下主席树思想
那么我们正常去求第k大的时候,假设不是区间第k大,而是全部1-n第k大,我们在不断添加的过程中就可以求出整个第k个添加进入的数字而求出来,但是问题在于本题是求区间,也就是我们在进行完 n 步操作,更新到了第 n 个版本的线段树后,想去求第 i 个版本的线段树,我们就很难搞了,因为历史版本被我们更新掉了,那么我们不如改一下更新方式,更新的时候不是修改某个点的值,而是基于更改的基础上,新建一个新的线段树,而这些线段树组成了一个类似线段树数组类型的东西。
那么我们求区间【i j】第k大,根据我们不断加入数据的思路,就是模拟第 i 个版本 更新到 第 j 个版本线段树之间第 k 大的数,用这样的思路来解决,再加上我们的可持久化线段树,就可以解决这个问题了
那么我们先建一个空树作为第 0 号,之后每一个新树都在原来基础上根据数据大小进行一下更新,这样的话建树过程耗时只有O(nlogn) ,之后查询的时候,假设查询 i j k 我们就可以 sum[ j ] - sum[ i ] 看看之间更新了多少个数字,如果小于 k ,就在二者的左子树去看一看,反之去右子树再找剩余的 k - cnt 个数字就好了。
以下是 AC 代码
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 5000000;
int ls[maxn]; //左儿子
int rs[maxn]; //右儿子
int num[maxn]; //用来记录离散后的值
int a[maxn]; //用来输入
int sum[maxn]; //线段树里保存的值
int T[maxn]; //每个节点在线段树里的标号
int n,m,tot = 0;
void build(int l,int r,int &x)
{
x = ++tot;//不再使用堆式存储,而是动态开点
sum[x] = 0;//初始是一棵空树
if(l == r)
return ;
int mid = (l+r)/2;
build(l,mid,ls[x]);//左子树
build(mid+1,r,rs[x]);//右子树
}
void update(int last,int p,int l,int r,int &x)//p点加1
{
x = ++tot;//新开一个点
ls[x] = ls[last];
rs[x] = rs[last];
sum[x] = sum[last] + 1;
//首先继承之前的线段树
if(l == r)
return ;
int mid = (l+r)/2;
if(p <= mid)
update(ls[last],p,l,mid,ls[x]);
else
update(rs[last],p,mid+1,r,rs[x]);//分清情况,只往一边建
}
int query(int s,int t,int l,int r,int k)//查询s到t区间第k大的数编号,l,r代表查找范围
{
if(l == r)//找到具体的叶子了
return l;
int mid = (l+r)/2;
int cnt = sum[ls[t]] - sum[ls[s]];//cnt为左子树新树减旧树
if(k <= cnt)
return query(ls[s],ls[t],l,mid,k);
else //已经有cnt个数字了 再找一下超出范围那几个就够了
return query(rs[s],rs[t],mid+1,r,k-cnt);
}
int main()
{
int x,y,z;
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;i ++)
{
scanf("%d",&a[i]);
num[i] = a[i];
}
sort(a+1,a+n+1);//排序
int cnt = unique(a+1,a+n+1)-a-1;//记录离散后的总数
build(1,cnt,T[0]);//先搞一个空树
for(int i = 1;i <= n;i ++)
num[i] = lower_bound(a+1,a+cnt+1,num[i]) - a;//记录离散
for(int i = 1;i <= n;i ++)
update(T[i-1],num[i],1,cnt,T[i]);//不断地建树和更新
while(m --)
{
scanf("%d%d%d",&x,&y,&z);
printf("%d\n",a[query(T[x-1],T[y],1,cnt,z)]);
}
return 0;
}