主席树学习(POJ 2104为例题)

主要学习了下主席树

参考博客:https://www.cnblogs.com/oyking/p/3230296.html

主席树就是多个线段树合起来,是一种高级数据结构

以本题为例

求区间第k大

那么我们就采用可持久化线段树(就是主席树)

先讲一下主席树思想

那么我们正常去求第k大的时候,假设不是区间第k大,而是全部1-n第k大,我们在不断添加的过程中就可以求出整个第k个添加进入的数字而求出来,但是问题在于本题是求区间,也就是我们在进行完 n 步操作,更新到了第 n 个版本的线段树后,想去求第 i 个版本的线段树,我们就很难搞了,因为历史版本被我们更新掉了,那么我们不如改一下更新方式,更新的时候不是修改某个点的值,而是基于更改的基础上,新建一个新的线段树,而这些线段树组成了一个类似线段树数组类型的东西。

那么我们求区间【i j】第k大,根据我们不断加入数据的思路,就是模拟第 i 个版本 更新到 第 j 个版本线段树之间第 k 大的数,用这样的思路来解决,再加上我们的可持久化线段树,就可以解决这个问题了

那么我们先建一个空树作为第 0 号,之后每一个新树都在原来基础上根据数据大小进行一下更新,这样的话建树过程耗时只有O(nlogn) ,之后查询的时候,假设查询 i j k 我们就可以 sum[ j ] - sum[ i ] 看看之间更新了多少个数字,如果小于 k ,就在二者的左子树去看一看,反之去右子树再找剩余的 k - cnt 个数字就好了。

 

 

以下是 AC 代码

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 5000000;
int ls[maxn];    //左儿子
int rs[maxn];    //右儿子
int num[maxn];   //用来记录离散后的值
int a[maxn];   //用来输入
int sum[maxn];   //线段树里保存的值
int T[maxn];     //每个节点在线段树里的标号
int n,m,tot = 0;

void build(int l,int r,int &x)
{
    x = ++tot;//不再使用堆式存储,而是动态开点
    sum[x] = 0;//初始是一棵空树
    if(l == r)
        return ;
    int mid = (l+r)/2;
    build(l,mid,ls[x]);//左子树
    build(mid+1,r,rs[x]);//右子树
}

void update(int last,int p,int l,int r,int &x)//p点加1
{
    x = ++tot;//新开一个点
    ls[x] = ls[last];
    rs[x] = rs[last];
    sum[x] = sum[last] + 1;
    //首先继承之前的线段树
    if(l == r)
        return ;
    int mid = (l+r)/2;
    if(p <= mid)
        update(ls[last],p,l,mid,ls[x]);
    else
        update(rs[last],p,mid+1,r,rs[x]);//分清情况,只往一边建
}

int query(int s,int t,int l,int r,int k)//查询s到t区间第k大的数编号,l,r代表查找范围
{
    if(l == r)//找到具体的叶子了
        return l;
    int mid = (l+r)/2;
    int cnt = sum[ls[t]] - sum[ls[s]];//cnt为左子树新树减旧树
    if(k <= cnt)
        return query(ls[s],ls[t],l,mid,k);
    else //已经有cnt个数字了 再找一下超出范围那几个就够了
        return query(rs[s],rs[t],mid+1,r,k-cnt);
}

int main()
{
    int x,y,z;
    scanf("%d%d",&n,&m);
    for(int i = 1;i <= n;i ++)
    {
        scanf("%d",&a[i]);
        num[i] = a[i];
    }
    sort(a+1,a+n+1);//排序
    int cnt = unique(a+1,a+n+1)-a-1;//记录离散后的总数
    build(1,cnt,T[0]);//先搞一个空树
    for(int i = 1;i <= n;i ++)
        num[i] = lower_bound(a+1,a+cnt+1,num[i]) - a;//记录离散
    for(int i = 1;i <= n;i ++)
        update(T[i-1],num[i],1,cnt,T[i]);//不断地建树和更新
    while(m --)
    {
        scanf("%d%d%d",&x,&y,&z);
        printf("%d\n",a[query(T[x-1],T[y],1,cnt,z)]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值