题目意思如下,有一个纯1构成的串,长度为N, 每次需要连续让 m 个 1 变成 0,也可以不变
距离 4 2 那样的话有 1111 0011 1001 0000 1100 这5种 最终方案数对 1e9+7 取模
我们可以发现这有一个dp思路,dp[i] 代表长度为 i 的方案数,dp[1] = 1,当 i = m 的时候 dp[m]=2; 之后的部分,就可以把这个数串分成两部分 dp[i] = dp[i-1] + dp[i-m] ,因为新引入一个1后,可以分情况来看,先保持新加入的为 1 不动,依然有 dp[i-1] 个方案,而假设把新加入这个 1 也加入变换的话,那么只要在这 n 长度串内连续选择 m 个变为 0 就好了,当然为了避免与之前情况出现重合部分,只要最后m个变0,剩下的 n-m 个自由变换,根据dp记录信息加上就好了
dp公式退出来后,我们发现,m在 100, n 在 1e18 O(n) 会炸掉
矩阵快速幂就好了 m^3可以接受,所以直接构建矩阵,矩阵大小 m*m
矩阵中 m[i+1][i] = 1, m[1][m] = 1 , m[m][m] = 1, base矩阵构建完毕,加数矩阵就是 1-m-1 = 1, m = 2 就好了
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1e5+5;
const int mod=1e9+7;
#define ll long long int
struct matrix
{
ll x[200][200];
};
ll n,m;
matrix mul(const matrix &a, const matrix &b)
{
matrix ans;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=m;j++)
{
ans.x[i][j]=0;
for(int k=1;k<=m;k++)
{
ans.x[i][j] += a.x[i][k] * b.x[k][j];
ans.x[i][j] %= mod;
}
}
}
return ans;
}
matrix qpow(matrix a,ll b)
{
matrix ans;
for(int i=1;i<=m;i++)ans.x[i][i]=1;
while(b)
{
if(b&1)ans = mul(ans, a);
a = mul(a, a);
b>>=1;
}
return ans;
}
int main()
{
cin>>n>>m;
if(n<m){cout<<1<<endl;return 0;}
matrix base;
for(int i=1;i<m;i++) base.x[i+1][i] = 1;
base.x[1][m] = base.x[m][m] = 1;
base = qpow(base, n-m);
matrix ans;
for(int i=1;i<m;i++)ans.x[1][i]=1;
ans.x[1][m] = 2;
ans = mul(ans, base);
cout<<ans.x[1][m]<<endl;
return 0;
}