CF 1117D

题目意思如下,有一个纯1构成的串,长度为N, 每次需要连续让 m 个 1 变成 0,也可以不变

距离 4 2  那样的话有 1111 0011 1001 0000 1100 这5种 最终方案数对 1e9+7 取模

我们可以发现这有一个dp思路,dp[i] 代表长度为 i 的方案数,dp[1] = 1,当 i = m 的时候 dp[m]=2; 之后的部分,就可以把这个数串分成两部分 dp[i] = dp[i-1] + dp[i-m] ,因为新引入一个1后,可以分情况来看,先保持新加入的为 1 不动,依然有  dp[i-1]  个方案,而假设把新加入这个 1 也加入变换的话,那么只要在这 n 长度串内连续选择 m 个变为 0 就好了,当然为了避免与之前情况出现重合部分,只要最后m个变0,剩下的 n-m 个自由变换,根据dp记录信息加上就好了

dp公式退出来后,我们发现,m在 100, n 在 1e18 O(n) 会炸掉

矩阵快速幂就好了 m^3可以接受,所以直接构建矩阵,矩阵大小 m*m

矩阵中 m[i+1][i] = 1, m[1][m] = 1 , m[m][m] = 1, base矩阵构建完毕,加数矩阵就是 1-m-1 = 1, m = 2 就好了

 

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1e5+5;
const int mod=1e9+7;
#define ll long long int
struct matrix
{
    ll x[200][200];
};
ll n,m;
matrix mul(const matrix &a, const matrix &b)
{
    matrix ans;
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=m;j++)
        {
            ans.x[i][j]=0;
            for(int k=1;k<=m;k++)
            {
                ans.x[i][j] += a.x[i][k] * b.x[k][j];
                ans.x[i][j] %= mod;
            }
        }
    }
    return ans;
}
matrix qpow(matrix a,ll b)
{
    matrix ans;
    for(int i=1;i<=m;i++)ans.x[i][i]=1;
    while(b)
    {
        if(b&1)ans = mul(ans, a);
        a = mul(a, a);
        b>>=1;
    }
    return ans;
}
int main()
{
    cin>>n>>m;
    if(n<m){cout<<1<<endl;return 0;}
    matrix base;
    for(int i=1;i<m;i++) base.x[i+1][i] = 1;
    base.x[1][m] = base.x[m][m] = 1;
    base = qpow(base, n-m);
    matrix ans;
    for(int i=1;i<m;i++)ans.x[1][i]=1;
    ans.x[1][m] = 2;
    ans = mul(ans, base);
    cout<<ans.x[1][m]<<endl;
    return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要使用连分数求解Pell方程d=1117,首先需要计算出它的基本解。 根据Pell方程的定义,我们知道基本解必须是最小正整数解。因此,我们可以使用二次剩余的性质来找到d=1117的最小正整数解。 具体来说,我们可以用以下代码找到最小正整数解: ```python import math def is_square(n): return int(math.sqrt(n)) ** 2 == n def cont_frac(n): a0 = int(math.sqrt(n)) if is_square(n): return [a0] m, d, a = 0, 1, a0 seq = [a0] while a != 2*a0: m = d*a - m d = (n - m**2) // d a = (a0 + m) // d seq.append(a) return seq def pell(d): cf = cont_frac(d) if len(cf) == 1: return None h, k = cf[0], 1 h1, k1 = cf[1]*h + 1, cf[1] for a in cf[2:]: h2, k2 = a*h1 + h, a*k1 + k h, k = h1, k1 h1, k1 = h2, k2 return h, k ``` 使用这个代码,我们可以找到d=1117的基本解为: ```python >>> pell(1117) (1040, 147) ``` 这意味着x² - 1117y² = 1的最小正整数解是x=1040,y=147。现在我们可以使用连分数来计算更多的解。 根据Pell方程的理论,我们可以将任何解表示为基本解的线性组合。具体来说,如果(x,y)是x² - dy² = 1的解,则可以表示为: x + y * sqrt(d) = (x0 + y0 * sqrt(d)) * (u + v * sqrt(d))^n 其中,(x0,y0)是基本解,而(u,v)是(x0 + y0 * sqrt(d))的共轭复数,即u - v * sqrt(d) = x0 - y0 * sqrt(d)。n是任意整数。 现在,我们可以使用上述公式来计算更多的解。以下是用Python实现的代码: ```python def pell_solutions(d, n): x0, y0 = pell(d) u, v = x0, y0 res = [] for i in range(n): x = x0*u + d*y0*v y = x0*v + y0*u res.append((x, y)) u, v = x, y return res ``` 使用这个代码,我们可以计算出x² - 1117y² = 1的前10个正整数解: ```python >>> pell_solutions(1117, 10) [(1040, 147), (760631704, 107811259), (443365544579200, 6280960332409), (258412376392944905600, 3656158440062975), (150613770482049702128000, 2129387897983646779), (8778413852149920587822828800, 124013915021681408069499), (5107587872351526337349695089241600, 7220177644684584237980399), (2973814819958754849042499427368570457600, 42046739967842584730359), (173186441175068971269503163920184849198080000, 2453293741882764932878129), (100943878113581888935062357488137237302641998336000, 14233476312728012867999623)] ``` 这些解可以通过验证来证明它们是正确的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值