CF 1117D

题目意思如下,有一个纯1构成的串,长度为N, 每次需要连续让 m 个 1 变成 0,也可以不变

距离 4 2  那样的话有 1111 0011 1001 0000 1100 这5种 最终方案数对 1e9+7 取模

我们可以发现这有一个dp思路,dp[i] 代表长度为 i 的方案数,dp[1] = 1,当 i = m 的时候 dp[m]=2; 之后的部分,就可以把这个数串分成两部分 dp[i] = dp[i-1] + dp[i-m] ,因为新引入一个1后,可以分情况来看,先保持新加入的为 1 不动,依然有  dp[i-1]  个方案,而假设把新加入这个 1 也加入变换的话,那么只要在这 n 长度串内连续选择 m 个变为 0 就好了,当然为了避免与之前情况出现重合部分,只要最后m个变0,剩下的 n-m 个自由变换,根据dp记录信息加上就好了

dp公式退出来后,我们发现,m在 100, n 在 1e18 O(n) 会炸掉

矩阵快速幂就好了 m^3可以接受,所以直接构建矩阵,矩阵大小 m*m

矩阵中 m[i+1][i] = 1, m[1][m] = 1 , m[m][m] = 1, base矩阵构建完毕,加数矩阵就是 1-m-1 = 1, m = 2 就好了

 

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1e5+5;
const int mod=1e9+7;
#define ll long long int
struct matrix
{
    ll x[200][200];
};
ll n,m;
matrix mul(const matrix &a, const matrix &b)
{
    matrix ans;
    for(int i=1;i<=m;i++)
    {
        for(int j=1;j<=m;j++)
        {
            ans.x[i][j]=0;
            for(int k=1;k<=m;k++)
            {
                ans.x[i][j] += a.x[i][k] * b.x[k][j];
                ans.x[i][j] %= mod;
            }
        }
    }
    return ans;
}
matrix qpow(matrix a,ll b)
{
    matrix ans;
    for(int i=1;i<=m;i++)ans.x[i][i]=1;
    while(b)
    {
        if(b&1)ans = mul(ans, a);
        a = mul(a, a);
        b>>=1;
    }
    return ans;
}
int main()
{
    cin>>n>>m;
    if(n<m){cout<<1<<endl;return 0;}
    matrix base;
    for(int i=1;i<m;i++) base.x[i+1][i] = 1;
    base.x[1][m] = base.x[m][m] = 1;
    base = qpow(base, n-m);
    matrix ans;
    for(int i=1;i<m;i++)ans.x[1][i]=1;
    ans.x[1][m] = 2;
    ans = mul(ans, base);
    cout<<ans.x[1][m]<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值