题目
给你一个下标从 1 开始的整数数组 numbers
,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target
的两个数。如果设这两个数分别是 numbers[index1]
和 numbers[index2]
,则 1 <= index1 < index2 <= numbers.length
。
以长度为 2 的整数数组 [index1, index2]
的形式返回这两个整数的下标 index1
和 index2
。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
思路
- 双指针法:由于数组是已排序的,可以使用两个指针:
- 指针
i
从数组的开始位置(左侧)出发。 - 指针
j
从数组的结束位置(右侧)出发。
- 指针
- 计算和:
- 在每次迭代中,计算
numbers[i] + numbers[j]
的值。
- 在每次迭代中,计算
- 判断条件:
- 如果和等于
target
,则找到了答案,返回两个指针的索引(1-based)。 - 如果和小于
target
,说明需要更大的和,因此将左指针i
向右移动。 - 如果和大于
target
,说明需要更小的和,因此将右指针j
向左移动。
- 如果和等于
- 结束条件:
- 当
i
和j
相遇时,意味着没有找到符合条件的两个数。
- 当
复杂度分析
-
时间复杂度:
- 在最坏情况下,每个指针最多遍历一次整个数组。因为数组的长度为 nnn,因此时间复杂度为 O(n)O(n)O(n)。
-
空间复杂度:
- 使用了常量的额外空间来存储指针和结果,不需要额外的数据结构。因此空间复杂度为 O(1)O(1)O(1)。
代码实现
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
int i=0,j=numbers.size()-1;
while(i<j){
if(numbers[i]+numbers[j]==target)return {i+1,j+1};
if(numbers[i]+numbers[j]>target)j--;
if(numbers[i]+numbers[j]<target)i++;
}
return {};
}
};