50. Pow(x, n)(二分)

该博客介绍如何利用二分法解决 LeetCode 上的一个问题,即计算 x 的 n 次幂。通过示例解释了算法思路,并提供了具体的代码实现。重点在于优化时间复杂度,避免因 n 的范围过大导致的效率低下。
摘要由CSDN通过智能技术生成

题目

实现 pow(x, n) ,即计算 x 的 n 次幂函数。

示例 1:

输入: 2.00000, 10
输出: 1024.00000

示例 2:

输入: 2.10000, 3
输出: 9.26100

示例 3:

输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25

说明:

  • -100.0 < x < 100.0
  • n 是 32 位有符号整数,其数值范围是 [ − 2 31 , 2 31 − 1 ] [−2^{31}, 2^{31} − 1] [231,2311]

思路

这道题的 n n n 范围很大,显然要考虑时间复杂度问题,对于求幂。可以这样来看:
例如: 1 0 100 10^{100} 10100
事实上不需要循环100次,可以这样看:
1 0 100 = 1 0 50 × 1 0 50 = 1 0 25 × 1 0 25 × 1 0 25 × 1 0 25 ⋯ 10^{100}=10^{50}\times10^{50}=10^{25}\times10^{25}\times10^{25}\times10^{25}\cdots 10100=1050×1050=1025×1025×1025×1025
明显可以看出,可以用二分的思路解题,具体代码如下:

代码

public class Solution {

    public double recur(double x, int n){
        if (n == 0)
            return 1.0;
        double mid = recur(x, n/2);
        return mid * mid * ((n&1) != 0 ? x:1);
    }

    public double myPow(double x, int n) {
        if (n < 0)
            return 1/recur(x, n);
        return recur(x, n);
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        System.out.println(solution.myPow(2.0000, -2));
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值