考虑方程式:a^3 + b^3 = c^3 + d^3
其中:“^”表示乘方。a、b、c、d是互不相同的小于30的正整数。
这个方程有很多解。比如:
a = 1,b=12,c=9,d=10 就是一个解。因为:1的立方加12的立方等于1729,而9的立方加10的立方也等于1729。
当然,a=12,b=1,c=9,d=10 显然也是解。
如果不计abcd交换次序的情况,这算同一个解。
你的任务是:找到所有小于30的不同的正整数解。把a b c d按从小到大排列,用逗号分隔,每个解占用1行。比如,刚才的解输出为:
1,9,10,12
不同解间的顺序可以不考虑。
回溯:
#include<iostream>
using namespace std;
int result[5];
int visited[31] = { 0 };
void print() {
if(pow(result[1],3)+pow(result[4],3)== pow(result[2], 3) + pow(result[3], 3))
cout << result[1] <<","<< result[2] <<","<< result[3] <<","<< result[4] << endl;
}
int search(int k) {
int i;
for (i = result[k-1] + 1; i < 30; i++) {
if (visited[i]==0){
result[k] = i;
visited[i] = 1;
if (k == 4)
print();
else
search(k + 1);
visited[i] = 0;
}
}
return 0;
}
int main() {
search(1);
return 0;
}