卷积神经网络的应用
有监督:图像分类,图像识别
无监督:图像风格转化,图像修复,换脸,图像超清化,图像翻译,文字生成图像
卷积神经网络学到了什么
第一层神经网络学到了色彩
第二层神经网络学到了边缘信息
层次越深,神经网络学到的东西就越多,越来越抽象
图像风格转换-V1
- 内容特征:图像输入到CNN得到的某一层的激活值
- 风格特征(图像共性):图像输入到CNN得到的某一层的激活值之间的关联
- 风格转化
使用内容特征进行重建图像时,使用越高层的特征,得到的效果越不好.而风格特征则是相反.
Fij为第i张图片输入到第j层神经网络输出的激活值,Pij为另外一张i输入到j层神经网络的激活值.利用损失函数最小化Fij-Pij=loss,使得两张图片的内容相近.
风格特征是一种基于关联性的计算,计算公式如下:Gram矩阵.Fik,和Fj分别为多个神经核的输出,两两内积得到风格Gij,Aij为要生成图片的风格,然后最小化.
图片内容Ltotal=加权α乘Lcontent(内容平均值)+β乘Lstyle(风格平均值)
总模型如下:
Tensorfolw实现图像风格转化-V1算法
利用已有的模型vgg16
vgg结构如下
vgg16网络结构图
其中fc为全连接层,conv为卷积层
import os
import math
import numpy as np
import tensorflow as tf
from PIL import Image
import time
# 原有模型的RGB通道的值
VGG_MEAN = [103.939, 116.779, 123.68]
class VGGNet:
"""Builds VGG-16 net structure,
load parameters from pre-train models.
"""
def __init__(self, data_dict):
self.data_dict = data_dict
# 将卷积分离出来
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name='conv')
# 得到权重
def get_fc_weight(self, name):
return tf.constant(self.data_dict[name][0], name='fc')
# 得到偏置
def get_bias(self, name):
return tf.constant(self.data_dict[name][1], name='bias')
# 卷积层
def conv_layer(self, x, name):
"""Builds convolution layer."""
with tf.name_scope(name):
conv_w = self.get_conv_filter(name)
conv_b = self.get_bias(name)
h = tf.nn.conv2d(x, conv_w, [1,1,1,1], padding='SAME')
h = tf.nn.bias_add(h, conv_b)
h = tf.nn.relu(h)
return h
# pooling层
def pooling_layer(self, x, name):
"""Builds pooling layer"""
return tf.nn.max_pool(x,
ksize=[1,2,2,1],
strides=[1,2,2,1],
padding='SAME',
name=name
)
# 全连接层
def fc_layser(self, x, name, activation=tf.nn.relu):
"""Builds fuu """
with tf.name_scope(name):
fc_w = self.get_fc_weight(name)
fc_b = self.get_bias(name)
h = tf.matmul(x, fc_w)
h = tf.nn.bias_add(h, fc_b)
if activation is None:
return h
else:
return activation(h)
# 展平
def flatten_layer(self, x, name):
with tf.name_scope(name):
# x = [batch_size, image_width, image_height, channel]
x_shape = x.get_shape().as_list()
dim = 1
for d in x_shape[1:]:
dim *= d
x = tf.reshape(x, [-1, dim])
return x
def build(self, x_rgb):
"""
Build VGG16 network structure.
:param x_rgb: [1, 224, 224, 3]
:return:
"""
start_time = time.time()
print('building model ....')
r, g, b = tf.split(x_rgb, [1,1,1], axis=3)
x_bgr = tf.concat(
[b - VGG_MEAN[0],
g - VGG_MEAN[1],
r - VGG_MEAN[2],],
axis=3
)
assert x_bgr.get_shape().as_list()[1:] == [224, 224, 3]
self.conv1_1 = self.conv_layer(x_bgr, 'conv1_1')
self.conv1_2 = self.conv_layer(self.conv1_1, 'conv1_2')
self.pool1 = self.pooling_layer(self.conv1_2, 'pool1')
self.conv2_1 = self.conv_layer(self.pool1, 'conv2_1')
self.conv2_2 = self.conv_layer(self.conv2_1, 'conv2_2')
self.pool2 = self.pooling_layer(self.conv2_2, 'pool2')
self.conv3_1 = self.conv_layer(self.pool2, 'conv3_1')
self.conv3_2 = self.conv_layer(self.conv3_1, 'conv3_2')
self.conv3_3 = self.conv_layer(self.conv3_2, 'conv3_3')
self.pool3 = self.pooling_layer(self.conv3_3, 'pool3')
self.conv4_1 = self.conv_layer(self.pool3, 'conv4_1')
self.conv4_2 = self.conv_layer(self.conv4_1, 'conv4_2')
self.conv4_3 = self.conv_layer(self.conv4_2, 'conv4_3')
self.pool4 = self.pooling_layer(self.conv4_3, 'pool4')
self.conv5_1 = self.conv_layer(self.pool4, 'conv5_1')
self.conv5_2 = self.conv_layer(self.conv5_1, 'conv5_2')
self.conv5_3 = self.conv_layer(self.conv5_2, 'conv5_3')
self.pool5 = self.pooling_layer(self.conv5_3, 'pool5')
'''
self.flatten5 = self.flatten_layer(self.pool5, 'flatten')
self.fc6 = self.fc_layser(self.flatten5, 'fc6')
self.fc7 = self.fc_layser(self.fc6, 'fc7')
self.fc8 = self.fc_layser(self.fc7, 'fc8', activation=None)
self.prob = tf.nn.softmax(self.fc8, name='prob')
'''
print('Building model finished:{}'.format(time.time()- start_time))
# gugon = r'.\deep_learn\images\gugong.jpg'
# gugong = Image.open(gugon)
# gugong_resize = gugong.resize((224, 224), Image.ANTIALIAS)
# gugong_resize.save(r'.\deep_learn\images\gugong_resize.jpg')
#%%
vgg_npy_path = r'.\deep_learn\vgg16.npy'
# data_dict = np.load(vgg_npy_path, encoding='latin1').item()
# vgg16_for_result = VGGNet(data_dict)
# content = tf.placeholder(tf.float32, shape=[1, 224, 224, 3])
# vgg16_for_result.build(content)
style_img_path = r'.\deep_learn\images\xingyueye_resize.jpeg'
content_img_path = r'.\deep_learn\images\gugong_resize.jpg'
num_steps = 100
learning_rate = 10
lambda_c = 0.1
lambda_s = 500
output_dir = r'./run_style_trainsfer'
if not os.path.exists(output_dir):
os.mkdir(output_dir)
def initial_result(shape, mean, sdddev):
initail = tf.truncated_normal(shape, mean, sdddev)
return tf.Variable(initail)
def read_img(img_name):
img = Image.open(img_name)
np_img = np.array(img) # (224, 224, 3)
np_img = np.asarray([np_img], dtype=np.int32) # (1, 224,224, 3)
print(np_img.shape)
return np_img
# 计算两张图片的相似度
def gram_matrix(x):
"""Calulates gram matrix
:param x: features extracted from VGG Net. shape: [1, width, height, ch]
:return:
"""
b, w, h, ch = x.get_shape().as_list()
features = tf.reshape(x, [b, h*w, ch])
gram = tf.matmul(features, features, adjoint_a=True) \
/ tf.constant(ch * w * h, tf.float32)
return gram
result = initial_result((1, 224, 224, 3), 127.5, 20)
content_val = read_img(content_img_path)
style_val = read_img(style_img_path)
content = tf.placeholder(tf.float32, shape=[1, 224, 224, 3])
style = tf.placeholder(tf.float32, shape=[1, 224, 224, 3])
data_dict = np.load(vgg_npy_path, encoding='latin1').item()
vgg_for_content = VGGNet(data_dict)
vgg_for_style = VGGNet(data_dict)
vgg_for_result = VGGNet(data_dict)
vgg_for_content.build(content)
vgg_for_style.build((style))
vgg_for_result.build(result)
# 提取VGGnet不同层次的卷积层, 不同层次的卷积对整体影响不同
content_features = [
vgg_for_content.conv1_2,
vgg_for_content.conv2_2,
# vgg_for_content.conv3_3,
# vgg_for_content.conv4_3,
# vgg_for_content.conv5_3,
]
result_content_features = [
vgg_for_result.conv1_2,
vgg_for_result.conv2_2,
# vgg_for_result.conv3_3,
# vgg_for_result.conv4_3,
# vgg_for_result.conv5_3,
]
style_features = [
# vgg_for_style.conv1_2,
# vgg_for_style.conv2_2,
# vgg_for_style.conv3_3,
vgg_for_style.conv4_3,
# vgg_for_style.conv5_3,
]
style_gram = [gram_matrix(feature) for feature in style_features]
result_style_features = [
# vgg_for_result.conv1_2,
# vgg_for_result.conv2_2,
# vgg_for_result.conv3_3,
vgg_for_result.conv4_3,
# vgg_for_result.conv5_3,
]
result_style_gram = [gram_matrix(feature) for feature in result_style_features]
# 内容loss
content_loss = tf.zeros(1, tf.float32)
for c, c_ in zip(content_features, result_content_features):
content_loss += tf.reduce_mean((c - c_) ** 2, [1, 2, 3])
style_loss = tf.zeros(1, tf.float32)
for s, s_ in zip(style_gram, result_style_gram):
style_loss += tf.reduce_mean((s - s_) ** 2, [1, 2])
# (内容与风格)加权
loss = content_loss * lambda_c + style_loss * lambda_s
train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
for step in range(num_steps):
loss_value, content_loss_value, style_loss_value, _ = \
sess.run([loss, content_loss, style_loss, train_op],
feed_dict = {
content:content_val,
style:style_val
})
print('step: {}, loss_value: {}, content_loss: {} style_loss: {}' \
.format(step+1,
loss_value[0],
content_loss_value[0],
style_loss_value[0],
))
result_img_path = os.path.join(
output_dir, 'result-{}.jpg'.format(step+1)
)
result_val = result.eval(sess)[0]
result_val = np.clip(result_val, 0, 255)
img_arr = np.asarray(result_val, np.uint8)
img = Image.fromarray(img_arr)
img.save(result_img_path)
# content = read_img(content_img_path)
# style = read_img(style_img_path)
风格图如下:(大小先剪裁成224,224)
内容图如下:
融合如下(第十五张):
第九十九张如下:
优化
亦可以做成超清图像转化器,Ys去掉,X为低分辨率图片,y^为高分辨率图片,让神经网络学习到从低分辨转化到高分辨图片。
V1和V2都引用了一个风格loss的东西:在卷积层的输出,多通道与多通道之间两两之间计算相似度,得到gram矩阵,有效但不知道为何有效,都存在一个风格loss无法定义的东西
def gram_matrix(x):
"""Calulates gram matrix
:param x: features extracted from VGG Net. shape: [1, width, height, ch]
:return:
"""
b, w, h, ch = x.get_shape().as_list()
features = tf.reshape(x, [b, h*w, ch])
gram = tf.matmul(features, features, adjoint_a=True) \
/ tf.constant(ch * w * h, tf.float32)
return gram
图像风格转化-V3