目录
TDD-net:论文地址
0.简介
这篇论文使用深度学习-目标检测的方法对PCB的缺陷进行检测,提出了一种针对细小缺陷的TDD-net (Tiny defect detection)检测网络来对PCB中的6种缺陷(Missing hole、Mouse bite、Open circuit、Short、Spur、Spurious copper)进行检测,检测效果高达98.9%,高于其他的现存的双阶段检测网络。
1.介绍
Faster R-CNN不适合检测小缺陷的原因是,当进行ROI pooling的时,小缺陷在低像素的特征图上所占的尺寸是非常小的相对于stride来说。
(个人感觉这个道理和标注车辆、行人时不标注远处小的目标的原因之一差不多,当目标物体太小时,可辨别性就没有那么高了。)
主要面临的两个挑战:
- 如何设置合理的anchors?太大的anchors不适合检测小的缺陷。
- 如何通过重新设计Faster R-CNN的体系结构融合多尺度特征图?细小的缺陷将会逐渐消失在卷积网络的前馈传播中。
数据方面:对数据进行数据增强来提高训练的数据量。
TDD-net加强了不同层次特征图的关系,并受益于低层次的结构信息。
最终使用一些tricks来加强检测的性能。
2.相关工作
2.1参照方法
通过与正常的图像进行比对,通过像素做差的的方式找到缺陷,然后再进行识别。主要的困难在于两张图片的对齐。因此,特征匹配的方法被提了出来,它从整张图片中提取健壮的特征,并且建立一个注册映射关系,通常提取的特征有点、边缘、特定区域的轮廓和质心。
另一个重要的参考方法是相似性度量。
这些方法所遇到的困难是错位、颜色变化、反射率变化、周围变化和模糊边界缺陷分割等,而且去获得一个标准的PCB图像从生产环境中是不现实的。