PCB缺陷检测—TDD-net论文笔记随笔

TDD-net:论文地址

0.简介

这篇论文使用深度学习-目标检测的方法对PCB的缺陷进行检测,提出了一种针对细小缺陷的TDD-net (Tiny defect detection)检测网络来对PCB中的6种缺陷(Missing hole、Mouse bite、Open circuit、Short、Spur、Spurious copper)进行检测,检测效果高达98.9%,高于其他的现存的双阶段检测网络。

与其他网络的对比

1.介绍

Faster R-CNN不适合检测小缺陷的原因是,当进行ROI pooling的时,小缺陷在低像素的特征图上所占的尺寸是非常小的相对于stride来说。

(个人感觉这个道理和标注车辆、行人时不标注远处小的目标的原因之一差不多,当目标物体太小时,可辨别性就没有那么高了。)

主要面临的两个挑战:

  1. 如何设置合理的anchors?太大的anchors不适合检测小的缺陷。
  2. 如何通过重新设计Faster R-CNN的体系结构融合多尺度特征图?细小的缺陷将会逐渐消失在卷积网络的前馈传播中。

数据方面:对数据进行数据增强来提高训练的数据量。

TDD-net加强了不同层次特征图的关系,并受益于低层次的结构信息。

最终使用一些tricks来加强检测的性能。

2.相关工作

2.1参照方法

通过与正常的图像进行比对,通过像素做差的的方式找到缺陷,然后再进行识别。主要的困难在于两张图片的对齐。因此,特征匹配的方法被提了出来,它从整张图片中提取健壮的特征,并且建立一个注册映射关系,通常提取的特征有点、边缘、特定区域的轮廓和质心。

另一个重要的参考方法是相似性度量。

这些方法所遇到的困难是错位、颜色变化、反射率变化、周围变化和模糊边界缺陷分割等,而且去获得一个标准的PCB图像从生产环境中是不现实的。

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值