【实验必用】如何在深度学习中加载数据集并进行训练和测试?

本文以RAF-DB数据集为例,详细介绍了如何在深度学习中加载和处理图像数据集,包括数据集介绍、基本数据增强、构建数据集类、在主函数中加载数据以及相关说明。通过此教程,你可以学习到如何准备数据集,实现一个用于表情识别的分类器。同时,文中提到的代码框架适用于一般的分类任务,只需根据自己的数据集进行相应修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据集的介绍

1.图像部分
  本博客以面部表情识别方向的RAF-DB数据集为例,进行讲解。该数据集共包含15339张图像,其中用于训练的图像共有12271张,用于测试的图像共有3068张。该数据集的部分图像如下。可以看到,在命名方面,RAF-DB数据集中的 训练图像以train开头,测试图像以test开头

  在这里插入图片描述
  在这里插入图片描述

2.标签部分

  (1) 该数据集的标签存在一个txt文件中,具体路径如下:

  在这里插入图片描述

  (2) 标签的具体存储方式如下:

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信小海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值