LSTM结构详解

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/zhangbaoanhadoop/article/details/81952284
         <!--一个博主专栏付费入口结束-->
        <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-d284373521.css">
                                    <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledit_views-d284373521.css">
            <div class="htmledit_views" id="content_views">
                                        <p> 在<a href="http://www.cnblogs.com/pinard/p/6509630.html" rel="nofollow" id="homepage1_HomePageDays_DaysList_ctl00_DayList_TitleUrl_0" data-token="04f52ae7b745f972bb5f70f1da8ffdef">循环神经网络(RNN)模型与前向反向传播算法</a>中,我们总结了对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。</p>

1. 从RNN到LSTM

    在RNN模型里,我们讲到了RNN具有如下的结构,每个序列索引位置t都有一个隐藏状态h(t)h(t)。

    如果我们略去每层都有的o(t),L(t),y(t)o(t),L(t),y(t),则RNN的模型可以简化成如下图的形式:

    图中可以很清晰看出在隐藏状态h(t)h(t)由x(t)x(t)和h(t−1)h(t−1)得到。得到h(t)h(t)后一方面用于当前层的模型损失计算,另一方面用于计算下一层的h(t+1)h(t+1)。

    由于RNN梯度消失的问题,大牛们对于序列索引位置t的隐藏结构做了改进,可以说通过一些技巧让隐藏结构复杂了起来,来避免梯度消失的问题,这样的特殊RNN就是我们的LSTM。由于LSTM有很多的变种,这里我们以最常见的LSTM为例讲述。LSTM的结构如下图:

    可以看到LSTM的结构要比RNN的复杂的多,真佩服牛人们怎么想出来这样的结构,然后这样居然就可以解决RNN梯度消失的问题?由于LSTM怎么可以解决梯度消失是一个比较难讲的问题,我也不是很熟悉,这里就不多说,重点回到LSTM的模型本身。

 2. LSTM模型结构剖析

    上面我们给出了LSTM的模型结构,下面我们就一点点的剖析LSTM模型在每个序列索引位置t时刻的内部结构。

    从上图中可以看出,在每个序列索引位置t时刻向前传播的除了和RNN一样的隐藏状态h(t)h(t),还多了另一个隐藏状态,如图中上面的长横线。这个隐藏状态我们一般称为细胞状态(Cell State),记为C(t)C(t)。如下图所示:

    除了细胞状态,LSTM图中还有了很多奇怪的结构,这些结构一般称之为门控结构(Gate)。LSTM在在每个序列索引位置t的门一般包括遗忘门,输入门和输出门三种。下面我们就来研究上图中LSTM的遗忘门,输入门和输出门以及细胞状态。

 2.1 LSTM之遗忘门

    遗忘门(forget gate)顾名思义,是控制是否遗忘的,在LSTM中即以一定的概率控制是否遗忘上一层的隐藏细胞状态。遗忘门子结构如下图所示:

    图中输入的有上一序列的隐藏状态h(t−1)h(t−1)和本序列数据x(t)x(t),通过一个激活函数,一般是sigmoid,得到遗忘门的输出f(t)f(t)。由于sigmoid的输出f(t)f(t)在[0,1]之间,因此这里的输出f^{(t)}代表了遗忘上一层隐藏细胞状态的概率。用数学表达式即为:

f(t)=σ(Wfh(t−1)+Ufx(t)+bf)f(t)=σ(Wfh(t−1)+Ufx(t)+bf)

    其中Wf,Uf,bfWf,Uf,bf为线性关系的系数和偏倚,和RNN中的类似。σσ为sigmoid激活函数。

2.2 LSTM之输入门

    输入门(input gate)负责处理当前序列位置的输入,它的子结构如下图:

    从图中可以看到输入门由两部分组成,第一部分使用了sigmoid激活函数,输出为i(t)i(t),第二部分使用了tanh激活函数,输出为a(t)a(t), 两者的结果后面会相乘再去更新细胞状态。用数学表达式即为:

i(t)=σ(Wih(t−1)+Uix(t)+bi)i(t)=σ(Wih(t−1)+Uix(t)+bi)

a(t)=tanh(Wah(t−1)+Uax(t)+ba)a(t)=tanh(Wah(t−1)+Uax(t)+ba)

    其中Wi,Ui,bi,Wa,Ua,ba,Wi,Ui,bi,Wa,Ua,ba,为线性关系的系数和偏倚,和RNN中的类似。σσ为sigmoid激活函数。

2.3 LSTM之细胞状态更新

    在研究LSTM输出门之前,我们要先看看LSTM之细胞状态。前面的遗忘门和输入门的结果都会作用于细胞状态C(t)C(t)。我们来看看从细胞状态C(t−1)C(t−1)如何得到C(t)C(t)。如下图所示:

    细胞状态C(t)C(t)由两部分组成,第一部分是C(t−1)C(t−1)和遗忘门输出f(t)f(t)的乘积,第二部分是输入门的i(t)i(t)和a(t)a(t)的乘积,即:

C(t)=C(t−1)⊙f(t)+i(t)⊙a(t)C(t)=C(t−1)⊙f(t)+i(t)⊙a(t)

    其中,⊙⊙为Hadamard积,在DNN中也用到过。

2.4 LSTM之输出门

    有了新的隐藏细胞状态C(t)C(t),我们就可以来看输出门了,子结构如下:

    从图中可以看出,隐藏状态h(t)h(t)的更新由两部分组成,第一部分是o(t)o(t), 它由上一序列的隐藏状态h(t−1)h(t−1)和本序列数据x(t)x(t),以及激活函数sigmoid得到,第二部分由隐藏状态C(t)C(t)和tanh激活函数组成, 即:

o(t)=σ(Woh(t−1)+Uox(t)+bo)o(t)=σ(Woh(t−1)+Uox(t)+bo)

h(t)=o(t)⊙tanh(C(t))h(t)=o(t)⊙tanh(C(t))

    通过本节的剖析,相信大家对于LSTM的模型结构已经有了解了。当然,有些LSTM的结构和上面的LSTM图稍有不同,但是原理是完全一样的。

3. LSTM前向传播算法

    现在我们来总结下LSTM前向传播算法。LSTM模型有两个隐藏状态h(t),C(t)h(t),C(t),模型参数几乎是RNN的4倍,因为现在多了Wf,Uf,bf,Wa,Ua,ba,Wi,Ui,bi,Wo,Uo,boWf,Uf,bf,Wa,Ua,ba,Wi,Ui,bi,Wo,Uo,bo这些参数。

    前向传播过程在每个序列索引位置的过程为:

    1)更新遗忘门输出:

f(t)=σ(Wfh(t−1)+Ufx(t)+bf)f(t)=σ(Wfh(t−1)+Ufx(t)+bf)

    2)更新输入门两部分输出:

i(t)=σ(Wih(t−1)+Uix(t)+bi)i(t)=σ(Wih(t−1)+Uix(t)+bi)

a(t)=tanh(Wah(t−1)+Uax(t)+ba)a(t)=tanh(Wah(t−1)+Uax(t)+ba)

    3)更新细胞状态:

C(t)=C(t−1)⊙f(t)+i(t)⊙a(t)C(t)=C(t−1)⊙f(t)+i(t)⊙a(t)

    4)更新输出门输出:

o(t)=σ(Woh(t−1)+Uox(t)+bo)o(t)=σ(Woh(t−1)+Uox(t)+bo)

h(t)=o(t)⊙tanh(C(t))h(t)=o(t)⊙tanh(C(t))

    5)更新当前序列索引预测输出:

ŷ (t)=σ(Vh(t)+c)y^(t)=σ(Vh(t)+c)

4.  LSTM反向传播算法推导关键点

    有了LSTM前向传播算法,推导反向传播算法就很容易了, 思路和RNN的反向传播算法思路一致,也是通过梯度下降法迭代更新我们所有的参数,关键点在于计算所有参数基于损失函数的偏导数。

    在RNN中,为了反向传播误差,我们通过隐藏状态h(t)h(t)的梯度δ(t)δ(t)一步步向前传播。在LSTM这里也类似。只不过我们这里有两个隐藏状态h(t)h(t)和C(t)C(t)。这里我们定义两个δδ,即:

δ(t)h=∂L∂h(t)δh(t)=∂L∂h(t)

δ(t)C=∂L∂C(t)δC(t)=∂L∂C(t)

    反向传播时只使用了δ(t)CδC(t),变量δ(t)hδh(t)仅为帮助我们在某一层计算用,并没有参与反向传播,这里要注意。如下图所示:

 

    而在最后的序列索引位置ττ的δ(τ)hδh(τ)和 δ(τ)CδC(τ)为:

δ(τ)h=∂L∂O(τ)∂O(τ)∂h(τ)=VT(ŷ (τ)−y(τ))δh(τ)=∂L∂O(τ)∂O(τ)∂h(τ)=VT(y^(τ)−y(τ))

δ(τ)C=∂L∂h(τ)∂h(τ)∂C(τ)=δ(τ)h⊙o(τ)⊙(1−tanh2(C(τ)))δC(τ)=∂L∂h(τ)∂h(τ)∂C(τ)=δh(τ)⊙o(τ)⊙(1−tanh2(C(τ)))

    接着我们由δ(t+1)CδC(t+1)反向推导δ(t)CδC(t)。

    δ(t)hδh(t)的梯度由本层的输出梯度误差决定,即:

δ(t)h=∂L∂h(t)=VT(ŷ (t)−y(t))δh(t)=∂L∂h(t)=VT(y^(t)−y(t))

    而δ(t)CδC(t)的反向梯度误差由前一层δ(t+1)CδC(t+1)的梯度误差和本层的从h(t)h(t)传回来的梯度误差两部分组成,即:

δ(t)C=∂L∂C(t+1)∂C(t+1)∂C(t)+∂L∂h(t)∂h(t)∂C(t)=δ(t+1)C⊙f(t+1)+δ(t)h⊙o(t)⊙(1−tanh2(C(t)))δC(t)=∂L∂C(t+1)∂C(t+1)∂C(t)+∂L∂h(t)∂h(t)∂C(t)=δC(t+1)⊙f(t+1)+δh(t)⊙o(t)⊙(1−tanh2(C(t)))

    有了δ(t)hδh(t)和δ(t)CδC(t), 计算这一大堆参数的梯度就很容易了,这里只给出WfWf的梯度计算过程,其他的Uf,bf,Wa,Ua,ba,Wi,Ui,bi,Wo,Uo,bo,V,cUf,bf,Wa,Ua,ba,Wi,Ui,bi,Wo,Uo,bo,V,c的梯度大家只要照搬就可以了。

∂L∂Wf=∑t=1τ∂L∂C(t)∂C(t)∂f(t)∂f(t)∂Wf=∑t=1τδ(t)C⊙C(t−1)⊙f(t)⊙(1−f(t))(h(t−1))T∂L∂Wf=∑t=1τ∂L∂C(t)∂C(t)∂f(t)∂f(t)∂Wf=∑t=1τδC(t)⊙C(t−1)⊙f(t)⊙(1−f(t))(h(t−1))T

5. LSTM小结

    LSTM虽然结构复杂,但是只要理顺了里面的各个部分和之间的关系,进而理解前向反向传播算法是不难的。当然实际应用中LSTM的难点不在前向反向传播算法,这些有算法库帮你搞定,模型结构和一大堆参数的调参才是让人头痛的问题。不过,理解LSTM模型结构仍然是高效使用的前提。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

参考资料:

1) Neural Networks and Deep Learning by By Michael Nielsen

2) Deep Learning, book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

3) UFLDL Tutorial

4)Understanding-LSTMs

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值