Jarry的目标跟踪学习笔记一

本文探讨了目标跟踪在计算机视觉中的重要性及其在视频监控、人机交互等领域的应用。回顾了经典算法如Struck、SCM、TLD、LSK、ASLA,并介绍了基于相关滤波器的现代算法如KCF、SAMF、DSST。同时,概述了OTB和VOT两大目标跟踪数据集,以及未来的学习计划。
摘要由CSDN通过智能技术生成

Jarry的目标跟踪学习笔记一

目标跟踪是计算机视觉中的一个重要方向,已经由来已久,并且有着广泛的应用,如:视频监控,人机交互, 无人驾驶等。在我的想象中,自己研究的内容就是,将来钢铁侠头盔里追踪敌人的那个程序。不过随着查阅资料,了解到再多一些之后,越发感觉这个领域其实很大很宽,举步维艰,勉励自己一点点地从基础的算法,一步一步地了解,打实基础之后,希望能对现在性能比较优秀的深度学习算法有所领悟。

刚开始看的是一篇综述,来自一篇发表在ICCV上的

Y.
Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
(AUC)

这篇论文介绍了目标跟踪的历史面临的问题和发展前景等,当时看得不大懂,所以决定从很久之前的经典算法开始入手,这时就有人推荐了吴毅老师的论文,于是我也去阅读了一下:

Wu Y, Lim J, Yang M H. Online object tracking: A benchmark
[C]// CVPR, 2013.

文章涉及的2012年之前的跟踪方法有很多,提炼了一些比较经典常用于做比较地方法,首先2012年以前的算法没有通用公认的数据集,在这论文里按照目标跟踪常出现的难点进行了分类(比如光照变化,尺度变化,运动模糊等),并且收集了2012年之前的开源的代码进行了实验,对比得出了几个比较优秀的算法,并且给出了将来发展的趋势。

我希望对比较优秀的跟踪算法从原理和代码上进行了解,这样肯定对以后深入学习有辅助。Struck跟踪算法:Structed
Output Tracking with Kernels   (ICCV /2011年)

SCM跟踪算法:W. Zhong, H. Lu, and M.-H. Yang. Robust Object Tracking via
Sparsity-based Collaborative Model. In CVPR, 2012. )

TLD:TLD目标跟踪算法是Tracking learning Detection算法的简称。这个视频跟踪算法框架由英国萨里大学的一个捷克籍博士生Zdenek
Kalal提出。TLD将传统的视频跟踪算法的跟踪模块(Tracker)与检测模块(Detector)结合起来,同时加入了学习(Learning)的过程,使得跟踪的效果更佳稳定、可靠。

LSK:B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust Tracking
using Local Sparse Appearance Model and K-Selection. In CVPR, 2011.

ASLA:X. Jia, H. Lu, and M.-H. Yang. Visual
Tracking via Adaptive Structural Local Sparse Appearance Model. In CVPR, 2012.

突然发现了有大佬总结的算法论文整合:

https://blog.csdn.net/qq_29540745/article/details/79120004

不过我真是对用大写字母组合简称作为算法代表的方式有些不适,而且目标跟踪的算法也太多了,就很手忙脚乱。

由这篇文章引出的就是常用数据库:

经常说的两个数据库分别是OTB和VOT,OTB50和OTB100来自吴毅老师建立的数据库(50和100分别代表包含的视频数量);VOT(visual object tracking)是一个每年举办的比赛。http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html

和http://www.votchallenge.net/

现在使用的基本上是OTB100和VOT2016,数据库已经下载好了。

OTB的数据库里格式都是一系列的照片,人工标注的点,比较容易使用。

VOT里数据格式也是一样的,感觉VOT的数据集比较全并且代表性比较好,自己感觉。

接下来从2012年之后的算法,相关滤波,深度学习。目前了解到的是,一些算法都是基于相关滤波算法(Correlation
Filters)的改进,比较优秀的算法有:

KCF:Kernelized Correlation Filters 核相关滤波

SAMF:基于KCF,特征是HOG+CN,多尺度方法是平移滤波器在多尺度缩放的图像块上进行目标检测,取响应最大的那个平移位置及所在尺度:

Li Y, Zhu J. A scale adaptive kernel
correlation filter tracker with feature integration [C]// ECCV, 2014.

DSST:KCF算法改进效果比较好的一个算法,尺度自适应。

Danelljan M, Häger G, Khan F, et al. Accurate scale estimation
for robust visual tracking [C]// BMVC, 2014.

假期前研究的就是这篇论文,评价很高,因为到2014年,目标跟踪领域还没有大量使用深度学习的时候,DSST这个相关滤波算法的变化版取得了非常不错的成绩。

我的解析附在另一页:

https://blog.csdn.net/qq_40972038/article/details/88090006

Danelljan M大佬的主页:

http://www.cvl.isy.liu.se/research/objrec/visualtracking/

最近几天,看的是mean shift算法,从一篇老论文里找到了可运行出的代码,正在学习。

到此,目前了解过的目标跟踪的算法,接下来一个阶段会学习那些经典算法:均值漂移,粒子滤波和kalman滤波,把他们实现并且完全理解。鉴于matlab和C++对于目标跟踪算法地重要性,这学期也要复习和强化两门语言地使用。第二学期,心态悄然地发生着改变,感觉这个领域真的是很大了,想学地很多,每天地时间有限,虽然这学期来了因为紧迫感,效率是高了一些,不过还是有种,老师说让我移山,我一看,哇喜马拉雅山,再一看手里的工具,10快包邮的儿童铲,无力感,希望自己多努力吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值