LeetCode1:两数之和

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出和为目标值 target 的那两个整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]

提示:

2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案
进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?

Related Topics
数组
哈希表

1. 双指针

  • 遍历数组中的每一个数 x,然后在 x 后面的元素中寻找 target-x
    public int[] twoSum(int[] nums, int target) {
        for (int i = 0; i < nums.length; i++) {
            for (int j = i + 1; j < nums.length; j++) {
                if (nums[i] + nums[j] == target) {
                    return new int[] {i, j};
                }
            }
        }
        return new int[0];
    }
  • 复杂度分析
    时间复杂度:O(N^2 ),其中 N 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
    空间复杂度:O(1)。

2. 哈希表

  • 双指针的时间复杂度较高的原因是寻找 target-x 的时间复杂度过高,如果使用哈希表,可以将寻找 target-x 的时间复杂度降低到从 O(N) 降低到 O(1)。
  • 创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target-x,如果不存在,就将 x 插入到哈希表中,方便遍历到 target-x 时,能匹配到 x。
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < nums.length; i++) {
            int another = target - nums[i];
            Integer anotherIndex = map.get(another);
            if (null != anotherIndex) {
                return new int[] {anotherIndex, i};
            } else {
                // 如果找不到另外一个数,则将这个数放入map中
                map.put(nums[i], i);
            }
        }
        return new int[0];
    }
  • 复杂度分析
    时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。
    空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值