给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出和为目标值 target 的那两个整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
提示:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案
进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?
Related Topics
数组
哈希表
1. 双指针
- 遍历数组中的每一个数 x,然后在 x 后面的元素中寻找 target-x
public int[] twoSum(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
for (int j = i + 1; j < nums.length; j++) {
if (nums[i] + nums[j] == target) {
return new int[] {i, j};
}
}
}
return new int[0];
}
- 复杂度分析
时间复杂度:O(N^2 ),其中 N 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
空间复杂度:O(1)。
2. 哈希表
- 双指针的时间复杂度较高的原因是寻找 target-x 的时间复杂度过高,如果使用哈希表,可以将寻找 target-x 的时间复杂度降低到从 O(N) 降低到 O(1)。
- 创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target-x,如果不存在,就将 x 插入到哈希表中,方便遍历到 target-x 时,能匹配到 x。
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int another = target - nums[i];
Integer anotherIndex = map.get(another);
if (null != anotherIndex) {
return new int[] {anotherIndex, i};
} else {
map.put(nums[i], i);
}
}
return new int[0];
}
- 复杂度分析
时间复杂度:O(N),其中 N 是数组中的元素数量。对于每一个元素 x,我们可以 O(1) 地寻找 target - x。
空间复杂度:O(N),其中 N 是数组中的元素数量。主要为哈希表的开销。