前情回顾
1 误差
1.1 误差的来源
误差Error的来源有两种,一种是偏差Bias、一种是方差Variance。
Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。
假设我们要预测的点是靶心,下面这张图很好地展示了方差与偏差的关系。
1.2 误差的估测
从统计学的角度,偏差意味模型结果的期望与真实值的差距。
方差则各个模型结果间的差距。当数据点增多时,模型的方差会下降。
1.3 模型的误差
1.3.1 方差
简单的模型方差较小,复杂的模型方差较大。
一次模型的方差就比较小的,也就是是比较集中,离散程度较小。而5次模型的方差就比较大,同理散布比较广,离散程度较大。
所以用比较简单的模型,方差是比较小的(就像射击的时候每次的时候,每次射击的设置都集中在一个比较小的区域内)。如果用了复杂的模型,方差就很大,散布比较开。
这也是因为简单的模型受到不同训练集的影响是比较小的
1.3.2 偏差
简单的模型偏差较大,复杂的模型偏差较小。
如果想要知道不同模型间的偏差,先假设
f
^
\hat f
f^是图中的黑线。则对不同的模型,可以获得其结果如下(红线),尽管每次结果都不同,可以取平均(蓝线),这时会发现复杂模型的整体偏差较小。
1.3.3 偏差VS方差
如下图显示,我们在实际过程中观察到的其实是Error,它是由bias和variance组成的。
在模型复杂程度提升的过程中,偏差会上升,方差会减小,但总的误差会有一个较小的点。而我们想要找到的最佳模型,应该就是取得这个较小点的模型。
1.4 减小误差的方法
1.4.1 判断误差的来源
一般有几个小tips:
- 如果没有很好的训练数据集,就是偏差过大,也就是欠拟合;
- 如果有很好的训练数据集,即在训练集上得到很小的错误,但在测试集上得到大的错误,这意味着模型可能是方差比较大,就是过拟合。
1.4.2 解决方法
针对欠拟合的情形:
应该重新设计模型。因为之前的函数集里面可能根本没有包含 f ∗ f^* f∗可以:
将更多的函数加进去,比如考虑高度重量,或者HP值等等。 或者考虑更多次幂、更复杂的模型。 如果此时强行再收集更多的data去训练,这是没有什么帮助的,因为设计的函数集本身就不好,再找更多的训练集也不会更好。
针对过拟合的情形:
应想办法加入或者采集更多的数据,或者通过数据增广的方式,来增加数据。
但是很多时候不一定能做到收集更多的data。可以针对对问题的理解对数据集做调整。比如识别手写数字的时候,偏转角度的数据集不够,那就将正常的数据集左转15度,右转15度,类似这样的处理。
1.4.3 模型选择
不要只在单一数据集上来评价模型的误差,因为误差存在一定的随机性。
因此,应该考虑交叉验证的方法,即分为训练集、验证集、测试集。
特别是N折交叉验证
N折交叉验证,是指将训练集随机分为N份,然后训练n个模型,使用n个不同的验证集,看不同模型的训练效果。这样可以一定程度的减小单一数据集带来的随机性。
2 梯度下降法
2.1 梯度下降法
梯度下降法在回归中已有提及,李宏毅此处有一个很形象的讲解ppt页面
梯度下降法也存在一些问题
- 需要设定合适的学习率,下图可以直观地说明这一点。
上图体现了不同学习率下的学习效果。当学习率太高时,可能出现振荡,而无法学得结果;而学习率太低时,又学得很慢;中间有一个平衡点。
上图左边黑色为损失函数的曲线,假设从左边最高点开始,如果学习率调整的刚刚好,比如红色的线,就能顺利找到最低点。如果学习率调整的太小,比如蓝色的线,就会走的太慢,虽然这种情况给足够多的时间也可以找到最低点,实际情况可能会等不及出结果。如果 学习率调整的有点大,比如绿色的线,就会在上面震荡,走不下去,永远无法到达最低点。还有可能非常大,比如黄色的线,直接就飞出去了,更新参数的时候只会发现损失函数越更新越大。
虽然这样的可视化可以很直观观察,但可视化也只是能在参数是一维或者二维的时候进行,更高维的情况已经无法可视化了。
解决方法就是上图右边的方案,将参数改变对损失函数的影响进行可视化。比如学习率太小(蓝色的线),损失函数下降的非常慢;学习率太大(绿色的线),损失函数下降很快,但马上就卡住不下降了;学习率特别大(黄色的线),损失函数就飞出去了;红色的就是差不多刚好,可以得到一个好的结果。
- 容易陷入局部极值
梯度下降法还有可能卡在不是极值,但微分值是0的地方;还有可能实际中只是当微分值小于某一个数值就停下来了,但这里只是比较平缓,并不是极值点。
2.2 梯度下降法的改进方法
2.2.1 自适应学习率
所以就有自适应学习率的一些方法:
举一个简单的思想:随着次数的增加,通过一些因子来减少学习率
- 通常刚开始,初始点会距离最低点比较远,所以使用大一点的学习率
- update好几次参数之后呢,比较靠近最低点了,此时减少学习率
- 比如 η t = η t t + 1 \eta^t =\frac{\eta^t}{\sqrt{t+1}} ηt=t+1ηt, t t t 是次数。随着次数的增加, η t \eta^t ηt 减小
学习率不能是一个值通用所有特征,不同的参数需要不同的学习率
Adagrad 算法
Adagrad是一种自适应学习率的方法,每个参数的学习率都把它除上之前微分的均方根。
对比普通的梯度下降:
w
t
+
1
←
w
t
−
η
t
g
t
w^{t+1} \leftarrow w^t -η^tg^t
wt+1←wt−ηtgt
η
t
=
η
t
t
+
1
\eta^t =\frac{\eta^t}{\sqrt{t+1}}
ηt=t+1ηt
Adagrad 可以做的更好:
w
t
+
1
←
w
t
−
η
t
σ
t
g
t
w^{t+1} \leftarrow w^t -\frac{η^t}{\sigma^t}g^t
wt+1←wt−σtηtgt
g
t
=
∂
L
(
θ
t
)
∂
w
g^t =\frac{\partial L(\theta^t)}{\partial w}
gt=∂w∂L(θt)
其中 σ t \sigma^t σt是之前参数的所有微分的均方根,对于每个参数都是不一样的。
2.2.2 随机梯度下降法
随机梯度下降法相较一般的梯度下降法处理起来更快。损失函数不需要处理训练集所有的数据,选取一个例子 x n x^n xn
L
=
(
y
^
n
−
(
b
+
∑
w
i
x
i
n
)
)
2
L=(\hat y^n-(b+\sum w_ix_i^n))^2
L=(y^n−(b+∑wixin))2
θ
i
=
θ
i
−
1
−
η
▽
L
n
(
θ
i
−
1
)
\theta^i =\theta^{i-1}- \eta\triangledown L^n(\theta^{i-1})
θi=θi−1−η▽Ln(θi−1)
此时不需要像之前那样对所有的数据进行处理,只需要计算某一个例子的损失函数
L
n
L^n
Ln,就可以赶紧update 梯度。
2.2.3 特征缩放
在多特征输入时,将多个特征进行缩放处理,这个的好处在于可以平衡特征对梯度的影响。