Datawhale 7月学习——李弘毅深度学习:深度学习介绍和反向传播机制

前情回顾

  1. 机器学习简介
  2. 回归
  3. 误差与梯度下降

1 深度学习简介

1.1 深度学习的历史

李宏毅老师带我们简要回顾了深度学习的历史。

  • 1958: Perceptron (linear model)
  • 1969: Perceptron has limitation
  • 1980s: Multi-layer perceptron
    - Do not have significant difference from DNN today
  • 1986: Backpropagation
    - Usually more than 3 hidden layers is not helpful
  • 1989: 1 hidden layer is “good enough”, why deep?
  • 2006: RBM initialization (breakthrough)
  • 2009: GPU
  • 2011: Start to be popular in speech recognition
  • 2012: win ILSVRC image competition

感知机(Perceptron)非常像我们的逻辑回归(Logistics Regression)只不过是没有sigmoid激活函数。09年的GPU的发展是很关键的,使用GPU矩阵运算节省了很多的时间。

从2012年至今,可以称作是深度学习发展的爆发期,许多新的模型及方法被提出及实现。许多深度学习相关竞赛在这些年举办,也催生了很多优秀的模型。深度学习的网络结构,训练方法,GPU硬件的不断进步,促使其在许多应用领域不断的征服战场。(深度学习(deep learning)发展史

1.2 深度学习的实现

1.2.1 深度学习的三个步骤

对应前面回归问题提到,回归模型的步骤主要分为三步

  • step1:模型假设,选择模型框架(模型种类)
  • step2:模型评估,如何判断众多模型的好坏(损失函数)
  • step3:模型优化,如何筛选最优的模型(优化求解)

深度学习的步骤也是分为上述三步,具体到深度学习上是指:

  • Step1:神经网络(Neural network)
  • Step2:模型评估(Goodness of function)
  • Step3:选择最优函数(Pick best function)

在这里插入图片描述

1.2.2 神经网络

神经网络(Neural network)提出的最初,是把每一个节点,比喻为神经元(Neuron)。

每个Neuron里头发生的计算如下:
在这里插入图片描述
其中 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3意为输入, z z z将输入进行了线性变换; σ ( z ) \sigma(z) σ(z)为激活函数,一般为非线性函数(这样可以保证层数间的差别,保证hidden layer的正常运作)。

常见的激活函数为 s i g m o i d sigmoid sigmoid函数
在这里插入图片描述
此外还有 t a n h tanh tanh函数
在这里插入图片描述
R e L U ReLU ReLU函数
在这里插入图片描述
L e a k y R e L U LeakyReLU LeakyReLU函数
在这里插入图片描述

选择激活函数的经验法则
如果输出是0、1值(二分类问题),则输出层选择sigmoid函数,然后其它的所有单元都选择Relu函数。
这是很多激活函数的默认选择,如果在隐藏层上不确定使用哪个激活函数,那么通常会使用Relu激活函数。有时,也会使用tanh激活函数,但Relu的一个优点是:当z是负值的时候,导数等于0,这样会使得学习速度快很多。
sigmoid激活函数:除了在输出层且是一个二分类问题基本不会用它。tanh激活函数:tanh是非常优秀的,几乎适合所有场合。
ReLu激活函数:最常用的默认函数,如果不确定用哪个激活函数,就使用ReLu或者Leaky ReLu。

Neuron以很多不同的连接方式连接起来,这样就会产生不同的结构(structure)。
在这里插入图片描述

在这个神经网络里面,我们有很多逻辑回归函数( z = w x T + b z=wx^T+b z=wxT+b),其中每个逻辑回归都有自己的权重( w w w)和自己的偏差( b b b),这些权重和偏差就是参数。
而神经元的连接方式可以通过手动设计实现。

最常见的一种神经网络结构是完全连接前馈神经网络
所谓完全连接,就是指相邻两层的任意两个神经元间都存在连接关系。

前馈(feedforward)也可以称为前向,从信号流向来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),亦即信号没有从后一层又返回到前一层。

前馈这一概念是重要的,因为在之后的一些网络结构中,会出现信号反馈的情形。

一个典型的前馈神经网络

对于完全链接前馈神经网络,其计算过程,即为逐层计算当前输入在每一个神经元的输出,直到求出 y ^ \hat y y^。而每一个神经元的输出,都需要进行 z z z σ ( z ) \sigma (z) σ(z)两步求解。

在这里插入图片描述
神经网络到底可以有多深?
在这里插入图片描述
在这里插入图片描述
2015年发布的Residual Net,有152层。

但无论神经网络有多深,整个神经网络可以看作是通过隐藏层来进行特征转换。

把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实是把前面的隐藏层的输出当做输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。

在这里插入图片描述

1.2.3 模型评估

对于模型的评估,我们一般采用损失函数来反应模型的好坏,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对 y y y y ^ ​ \hat{y}​ y^的损失进行计算,接下来我们就是调整参数,让交叉熵越小越好。
C = − 1 n ∑ x [ y ln ⁡ ( y ^ ) + ( 1 − y ) ln ⁡ ( 1 − y ^ ) ] C=-\frac{1}{n}\displaystyle\sum_x[y\ln(\hat y)+(1-y)\ln(1-\hat y)] C=n1x[yln(y^)+(1y)ln(1y^)]

对于单个数据的损失如下图:
在这里插入图片描述
对于损失,我们不单单要计算一个案例的,要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。
在这里插入图片描述

1.2.4 选择最优函数

接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者是找一组神经网络的参数 θ \theta θ,来最小化总体损失L。

所用的选择最优函数的方法是梯度下降法。
在这里插入图片描述
在这里插入图片描述

1.3 神经网络的实现

1.3.1 矩阵计算

前面提到,神经网络的层数可以很深。随着层数变多,运算量增大,通常会达到超过亿万级的计算。
对于亿万级的计算,使用loop循环效率很低,需要引入矩阵计算(Matrix Operation)能使得来提高运算的速度以及效率。
在这里插入图片描述
在这里插入图片描述
for循环计算效率很低,我们应当借助向量化的并行计算来简化这个代码过程,使得计算速度加快,从而减少调试周期。

所谓向量化,就是尽可能的将同类型的单个变量进行方向上的堆叠,再利用线性代数的相关知识进行批量计算。

充分利用python的numpy库具有的向量化计算功能,则单神经元的向量化计算如下(包括梯度下降法)

Z = np.dot(w.T,X) + b 
A = sigmoid(Z) 
dZ = A - Y 
dw = 1/m * X * dZ.T 
db = 1/m * np.sum(dZ) 
w = w - alpha*dw 
b = b - alpha*db

多层神经网络的维度通式:
在这里插入图片描述

1.3.2 示例:手写数字识别

举一个手写数字体识别的例子:
输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示
输出:10个维度,每个维度代表一个数字的置信度。

在这里插入图片描述
在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数。
在这里插入图片描述

接下来有几个问题:

  • 多少层? 每层有多少神经元?
    这个问我们需要用尝试加上直觉的方法来进行调试。对于有些机器学习相关的问题,我们一般用特征工程来提取特征,但是对于深度学习,我们只需要设计神经网络模型来进行就可以了。对于语音识别和影像识别,深度学习是个好的方法,因为特征工程提取特征并不容易。
  • 结构可以自动确定吗?
    有很多设计方法可以让机器自动找到神经网络的结构的,比如进化人工神经网络(Evolutionary Artificial Neural Networks)但是这些方法并不是很普及 。
  • 我们可以设计网络结构吗?
    可以的,比如 CNN卷积神经网络(Convolutional Neural Network )

参考阅读

  1. 李宏毅机器学习笔记(LeeML-Notes)
  2. 李宏毅机器学习课程视频
  3. 吴恩达深度学习课程视频
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SheltonXiao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值