cuda11.3安装+cudnn11.3安装+torch1.10.2安装+torchvision0.11.3下载(pytorch环境搭建)

本文详细指导如何检查NVIDIA显卡CUDA版本,下载并安装CUDA和CUDNN,创建Python虚拟环境,下载并安装PyTorch,验证环境设置,包括在Windows上进行的步骤。适合深度学习开发者快速搭建开发环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.查看NVIDIA显卡的CUDA适用版本
电脑主页右键点开NVIDIA控制面板
在这里插入图片描述

点开左下角系统信息,点开组件信息。
在这里插入图片描述cuda适用版本为11.4,下载适用的版本。

2.下载cuda

cuda toolkit下载地址https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
下载后双击安装即可。
查看环境变量是否存在下面两行。
在这里插入图片描述
cmd打开命令提示符,输入nvcc -V,得到有效输出则按安装成功。
在这里插入图片描述
3.cudnn下载安装
需要登陆,稍微麻烦一点。在https://developer.nvidia.com/rdp/cudnn-archive下载合适的版本。
在这里插入图片描述

下载下来是这样的压缩包
在这里插入图片描述
安装可以参考文章https://blog.csdn.net/weixin_43848614/article/details/117221384

4.创建虚拟环境
conda create -n python38 python==3.8.2 创建虚拟环境
conda activate python38 激活虚拟环境
在环境中下载
conda info --envs查看anaconda安装路径

5.下载pytorch
在官网查看对应的版本https://pytorch.org/
pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio===0.10.2+cu113 -f
https://download.pytorch.org/whl/cu113/torch_stable.html 官网
在这里插入图片描述

https://pytorch.org/get-started/previous-versions/pytorch官网

6.如果网络不好,一直加载不了,直接下载适合版本的torch和torchvision两个‘.whl’文件到本地,放入python38文件夹下。https://download.pytorch.org/whl/torch_stable.html

进入cmd命令,进入python38文件路径下

cd..   退出目录一层
cd D:  进入D盘
cd D:\pythonEnvironment\python38   进入目录下
pip install torch

7.查看是否cuda可用
输入代码

import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)

输出为true,说明已经正确安装。
在这里插入图片描述

参考:https://blog.csdn.net/java_pythons/article/details/114782621
https://blog.csdn.net/weixin_43288986/article/details/106147746

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值