【CUDA】cuda安装 (windows版)

本文详细介绍了在Windows 10系统上安装CUDA和cuDNN的过程,包括下载安装包、配置环境变量及验证安装是否成功的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本次安装参考了网上许多教程,结合自己的需求与理解,写下此篇博客,仅做本人总结使用。。

一、前言

windows10 版本安装 CUDA ,首先需要下载两个安装包

  • CUDA toolkit(toolkit就是指工具包)
  • cuDNN

注:cuDNN 是用于配置深度学习使用

官方教程

CUDA:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

cuDNN:https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows

二、安装工具的准备

1. CUDA toolkit Download

https://developer.nvidia.com/cuda-toolkit-archive

官网安装:

https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64

在这里插入图片描述

在这里插入图片描述

GA = General Availability,通用版本,指软件的通用版本。
RC=Release Candidate,含义 是"发布候选版",它不是最终的版本,而是最终版(RTM=Release To Manufacture)之前的最后一个版本
在这里插入图片描述
官网说明文档,
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

在这里插入图片描述

CUDA的版本是跟显卡型号有关还是驱动有关?

一般是驱动版本决定了能用的CUDA版本的上限,比如新版的显卡驱动可以支持老的CUDA runtime。但是老的显卡可能无法更新到最新的显卡驱动,比如Fermi显卡只能装到391驱动,因此只能用到CUDA9.1。除此之外,显卡硬件与CUDA compute capability相关,当然编译时也可以指定streaming multiprocessor。新的架构支持更多特性就是了。

最终本人下载的

在这里插入图片描述

2. cuDNN Download

cuDNN地址如下,不过要注意的是,我们需要注册一个账号,才可以进入到下载界面。大家可以放心注册的。

https://developer.nvidia.com/rdp/cudnn-download

在这里插入图片描述

注册成功后的下载界面

在这里插入图片描述

可以使用下面网址,查看适配的 cuDNN

https://developer.nvidia.com/rdp/cudnn-archive

在这里插入图片描述

在这里插入图片描述

本人下载的版本如下:

在这里插入图片描述

三、 CUDA 安装与配置过程

  1. 双击“exe文件”,选择下载路径(推荐默认路径)

在这里插入图片描述

  1. 安装选项

如果你是第一次安装,尽量全选
如果你是第n次安装,尽量只选择第一个,不然会出现错误

在这里插入图片描述

不要选Visual Studio Integration,即使选了也不能成功安装

在这里插入图片描述
如果本机的驱动版本(当前版本)小于cuda对应的版本(新版本),则选择,否则不选。如果当前版本小于新版本,并且不覆盖安装,之后电脑会频繁蓝屏或死机

  1. 记住安装位置,tensorflow要求配置环境

在这里插入图片描述

重点提醒:一定要记住这个路径,把这个路径保留下来,后面我们还会用到!!!

  1. 安装进行
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

  1. 安装完成

在这里插入图片描述

查看系统变量中是否添加了路径,如果没有需要自己添加

在这里插入图片描述

测试环境是否安装成功

运行cmd,输入nvcc --version 即可查看版本号;
set cuda,可以查看 CUDA 设置的环境变量。

nvcc --version
set cuda

在这里插入图片描述

在这里插入图片描述

四、cuDNN配置

1.解压

cuDNN叫配置更为准确,我们先把下载的 cuDNN 解压缩,会得到下面的文件:

  1. cuDNN 解压缩后的文件
    在这里插入图片描述

下载后发现其实cudnn不是一个exe文件,而是一个压缩包,解压后,有三个文件夹,把三个文件夹拷贝到cuda的安装目录下

CUDA 的安装路径在前面截图中有,或者打开电脑的环境变量查看,默认的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1

后面那个v11.1是你自己的版本号

  1. CUDA 安装目录文件:
    在这里插入图片描述
    拷贝时看到,CUDA 的安装目录中,有和 cuDNN 解压缩后的同名文件夹,这里注意,不需要担心,直接复制即可。cuDNN 解压缩后的同名文件夹中的配置文件会添加到 CUDA安装目录中的同名文件夹中。

  2. 拷贝成功后的文件
    在这里插入图片描述

现在大家应该可以理解,cuDNN 其实就是 CUDA 的一个补丁而已,专为深度学习运算进行优化的。然后再参加环境变量

2.添加至系统变量
  1. 往系统环境变量中的 path 添加如下路径(根据自己的路径进行修改)
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\libnvvp
  1. 验证安装是否成功

配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwidthTest.exe:
首先win+R启动cmd,cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe,应该得到下图:

在这里插入图片描述

在这里插入图片描述

参考博客:

https://blog.csdn.net/mao_hui_fei/article/details/104246466

https://www.pianshen.com/article/8647746165/

https://blog.csdn.net/weixin_45494025/article/details/100746025

https://blog.csdn.net/u011473714/article/details/95042856

### 如何在命令行中查看CUDA安装目录 为了确认CUDA的具体安装位置,在Linux环境中可以采用多种方法进行查询。 通过`which`命令能够定位到可执行文件的位置,对于CUDA来说,则可以通过寻找`nvcc`编译器来间接得知CUDA安装路径[^1]: ```bash which nvcc ``` 上述命令返回的结果通常是类似于`/usr/local/cuda-xx.x/bin/nvcc`这样的路径,其中`xx.x`代表具体的CUDA本号。这表明了`nvcc`所在的绝对路径,而CUDA的整体安装根目录则是去掉最后的`bin/nvcc`部分得到的路径。 另外一种更为全面的方法是利用环境变量来进行查找。当成功配置好CUDA之后,通常会设置一些环境变量以便于程序调用。因此也可以尝试打印这些环境变量的内容来获取更多信息: ```bash echo $CUDA_HOME echo $PATH | grep -o '/.*cuda' ``` 第一条命令直接输出预设好的CUDA主目录;第二条命令则是在整个`$PATH`里筛选含有`cuda`关键字的部分,从而推测出可能存在的CUDA安装路径[^2]。 除了以上两种方式外,还可以借助`find`工具在整个文件系统范围内搜索特定名称的文件夹或文件作为补充手段。比如想要找到所有名为`cuda`或者带有该字样的顶级文件夹,可以用下面这条指令实现: ```bash sudo find / -type d -name "*cuda*" 2>/dev/null ``` 此操作将会遍历系统的各个角落并列出符合条件的目标,不过需要注意的是由于权限原因某些地方无法访问会被忽略掉,故而在实际应用时最好加上错误重定向(`2>/dev/null`)以免干扰正常结果展示[^3]。
评论 135
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何为xl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值