电商业务逻辑

《电商运营的业务分析逻辑总结》的学习和个人理解

1 核心指标

分析电商业务,都分析什么呢?
分析的是各种各样的指标,以 统计数量 占比 时长周期 排名 来量化指标。
整个电商都是围绕流量所展开的活动,如何去获取这些流量,进一步如何高效地获取精准的流量。获取了流量后,怎么让他们进行付费,又如何留住流量,不断产生新的流量。
总之,电商运营的核心是用户的吸收、留存与复购,最终体现在GMV上,那么核心的指标就是 :

  1. 活跃用户:DAU、MAU、WAU
  2. 用户留存:次日留存、3日留存、7日留存、30日留存等
  3. 用户转化:各个环节,细化到不同群体、不同品类的转化率
  4. 用户复购:复购率、复购金额
  5. 销售额:GMV(一定时间段内的销售总额)、客单价

2 分析方法

如何分析电商的业务呢?通常有四种分析角度来分析指标:

  1. 对比:横向、纵向,判断指标的合理性。
    纵比——全称纵向比较,即对同一经济主体同一指标在不同时期的数据进行比较,以说明该指标的历史性变化。举例:A商品销售额的同比或环比
    横比——全称横向比较,对不同经济主体在同一时期的同一指标进行比较,以说明该经济主体在这项指标上的相对位次。举例:A商品和B商品在某年度的销售额对比
    同比——不同年的同一月度或季度的指标对比,如2012年8月份比2011年8月份,2012年一季度比2011年一季度,2012年比2011年。
    环比——同年的不同月度或季度的指标对比,如2012年8月比2012年7月,2012年二季度比2012年一季度。

  2. 细分:通过公式拆解指标,定位问题。
    把一个指标拆解成多个指标,即某个指标是在其他指标的基础上计算的。

  3. 转化:一种从业务链条的角度定位问题的分析方法。
    如果某个环节的转化率大幅下降,那么这个环节可能有问题,需要调整。

  4. 分类:RFM模型,聚类算法等,是一种精细化运营的思想.
    建立一个维度,按照一定的标准给分析对象分类。

3 分析对象(维度)

电商内容是由人 货 场三部分组成的。

3.1 人:用户 客户 消费者

首先谈谈
电商中的人主要定义为消费者,消费者的属性与偏好也是现代营销理论中最重要的环节之一。
传统的营销思路是4P营销:产品 ( Product )、价格( Price )、促销( Promotion)、渠道(Place )。是以产品渠道为导向,制定标准化产品。
现在转型为4C营销:客户满意度,成本,便利,沟通。以消费者的需求为导向,制定个性化产品。

那么针对的分析逻辑有哪些呢?

3.1.1 用户画像

用户画像通过标签体系量化群体特征,达到快速了解分析对象,分层精准运营的目的。
用户画像从业务维度的标签划分举例如下:

基本属性社会属性消费习惯价值属性生命周期风险控制
性别社会角色类目偏好活跃度新客期黄牛用户
年龄职业品牌偏好客单价熟客期积分异常
地域薪资下单时间积分等级衰退期小号用户
兴趣下单频率信用等级流失期
退货占比
促销敏感度

用户画像可以帮助使用者快速了解群体这几个维度的分布特征,为拉新、留存、提高转化率、风险控制等运营阶段提供指导。具体到不同的业务问题中,还需要结合实时的销售数据进行分析。

给用户分类,对每类人群进行差异化营销:认知渠道(广告、无品牌倾向搜索<手机设备、浏览器、搜索引擎>)、消费习惯(看广告购买、粉丝互动、店铺浏览、关注/收藏/加购)

3.1.2 RFM模型(分类)

  • Recency 最近一次消费时间;
  • Frequency 一段时间内消费次数;
  • Money 消费金额

通过分类创建用户价值维:用户价值的分层分析(排列组合后可分为8类),精准营销,挽留高价值客户,引入潜在客户。

RFM
价值 发展价值 保持重要
保持 挽留发展 挽留一般

最理想的客户是重要价值用户,即最近经常来,每次消费数额都很大的客户。
最不值的客户是一般挽留用户,即很久没来,来的次数也少,每次消费金额很低的客户。

3.2 货:商品

其次谈谈
商品分析一般基于进销存的框架,指标涵盖采购环节、供应链环节、销售环节、售后环节。

商品分析的常用指标

  • 采购环节:商品种类数量以及各类商品的库存数和铺货率
  • 供应链环节:订单、库存比
  • 销售环节:货龄、售罄率、价位段占比、正价销售占比、销售额排名
  • 售后环节:退货率、特殊服务率、残损率

3.3 场:网页

最后谈谈,就是网页。
促销页、广告页、商品详情页、下单页、支付页 等等。

4 应用举例

业务链条(转化)–用户行为漏斗

  • AARRR用户生命周期理论:人+场
    获取app—激活注册—留存—转化—传播
  • 电商消费的全链路分析:人+货+场
    首页—浏览搜索—查看详情—加购—下单—支付—复购,以及在此基础上衍生的链路结构。

差异化运营

  • 从用户的活跃度(人)、商品偏好(货)、用户购买决策的不同阶段(场)进行差异化运营

电商数仓

ADS 数据应用层

用户行为数据仓库

  • 活跃用户的各项指标
  1. 每日活跃设备明细 – 每日活跃设备数 DAU
  2. 每周活跃设备明细 – 每周活跃设备数 WAU
  3. 每月活跃设备明细 – 每月活跃设备数 MAU
  4. 每日新增设备明细 – 每日新增设备数(当日DAU join 次日DAU)
    DAU2 left join DAU1 on day2 = date_add(day1,1) where DAU1.uid is null
  • 用户留存的各项指标
  1. 留存用户数(count(每日活跃设备明细-每日新增设备明细))
  2. 留存用户比率(次日留存用户数/当日DAU)
  3. 新增用户比率(每日新增设备数/DAU)

业务数据仓库 人货场

  • 用户转化的各项指标 这次仅举例计算下单率和支付率
    支付流水、订单 – 用户行为宽表(各个维度<环节>的用户总数)
  1. 用户行为漏斗分析(用户行为宽表/DAU)
  • 用户复购的各项指标
    订单详情、商品–用户购买商品明细
  1. 商品复购率(用户购买商品明细:统计用户维和商品维–>用户复购商品N次以上的情况有几种/用户购买商品的情况有几种)
  • 销售额的各项指标
  1. GMV一段时间内的成交总额(用户行为宽表中 以时间为粒度 计算 订单和支付的总数和总金额)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值