《电商运营的业务分析逻辑总结》的学习和个人理解
1 核心指标
分析电商业务,都分析什么呢?
分析的是各种各样的指标,以 统计数量 占比 时长周期 排名 来量化指标。
整个电商都是围绕流量所展开的活动,如何去获取这些流量,进一步如何高效地获取精准的流量。获取了流量后,怎么让他们进行付费,又如何留住流量,不断产生新的流量。
总之,电商运营的核心是用户的吸收、留存与复购,最终体现在GMV上,那么核心的指标就是 :
- 活跃用户:DAU、MAU、WAU
- 用户留存:次日留存、3日留存、7日留存、30日留存等
- 用户转化:各个环节,细化到不同群体、不同品类的转化率
- 用户复购:复购率、复购金额
- 销售额:GMV(一定时间段内的销售总额)、客单价
2 分析方法
如何分析电商的业务呢?通常有四种分析角度来分析指标:
-
对比:横向、纵向,判断指标的合理性。
纵比——全称纵向比较,即对同一经济主体同一指标在不同时期的数据进行比较,以说明该指标的历史性变化。举例:A商品销售额的同比或环比
横比——全称横向比较,对不同经济主体在同一时期的同一指标进行比较,以说明该经济主体在这项指标上的相对位次。举例:A商品和B商品在某年度的销售额对比
同比——不同年的同一月度或季度的指标对比,如2012年8月份比2011年8月份,2012年一季度比2011年一季度,2012年比2011年。
环比——同年的不同月度或季度的指标对比,如2012年8月比2012年7月,2012年二季度比2012年一季度。 -
细分:通过公式拆解指标,定位问题。
把一个指标拆解成多个指标,即某个指标是在其他指标的基础上计算的。 -
转化:一种从业务链条的角度定位问题的分析方法。
如果某个环节的转化率大幅下降,那么这个环节可能有问题,需要调整。 -
分类:RFM模型,聚类算法等,是一种精细化运营的思想.
建立一个维度,按照一定的标准给分析对象分类。
3 分析对象(维度)
电商内容是由人 货 场三部分组成的。
3.1 人:用户 客户 消费者
首先谈谈人
电商中的人主要定义为消费者,消费者的属性与偏好也是现代营销理论中最重要的环节之一。
传统的营销思路是4P营销:产品 ( Product )、价格( Price )、促销( Promotion)、渠道(Place )。是以产品渠道为导向,制定标准化产品。
现在转型为4C营销:客户满意度,成本,便利,沟通。以消费者的需求为导向,制定个性化产品。
那么针对人的分析逻辑有哪些呢?
3.1.1 用户画像
用户画像通过标签体系量化群体特征,达到快速了解分析对象,分层精准运营的目的。
用户画像从业务维度的标签划分举例如下:
基本属性 | 社会属性 | 消费习惯 | 价值属性 | 生命周期 | 风险控制 |
---|---|---|---|---|---|
性别 | 社会角色 | 类目偏好 | 活跃度 | 新客期 | 黄牛用户 |
年龄 | 职业 | 品牌偏好 | 客单价 | 熟客期 | 积分异常 |
地域 | 薪资 | 下单时间 | 积分等级 | 衰退期 | 小号用户 |
兴趣 | 下单频率 | 信用等级 | 流失期 | ||
退货占比 | |||||
促销敏感度 |
用户画像可以帮助使用者快速了解群体这几个维度的分布特征,为拉新、留存、提高转化率、风险控制等运营阶段提供指导。具体到不同的业务问题中,还需要结合实时的销售数据进行分析。
给用户分类,对每类人群进行差异化营销:认知渠道(广告、无品牌倾向搜索<手机设备、浏览器、搜索引擎>)、消费习惯(看广告购买、粉丝互动、店铺浏览、关注/收藏/加购)
3.1.2 RFM模型(分类)
- Recency 最近一次消费时间;
- Frequency 一段时间内消费次数;
- Money 消费金额
通过分类创建用户价值维:用户价值的分层分析(排列组合后可分为8类),精准营销,挽留高价值客户,引入潜在客户。
R | F | M |
---|---|---|
价值 发展 | 价值 保持 | 重要 |
保持 挽留 | 发展 挽留 | 一般 |
最理想的客户是重要价值用户,即最近经常来,每次消费数额都很大的客户。
最不值的客户是一般挽留用户,即很久没来,来的次数也少,每次消费金额很低的客户。
3.2 货:商品
其次谈谈货。
商品分析一般基于进销存的框架,指标涵盖采购环节、供应链环节、销售环节、售后环节。
商品分析的常用指标
- 采购环节:商品种类数量以及各类商品的库存数和铺货率
- 供应链环节:订单、库存比
- 销售环节:货龄、售罄率、价位段占比、正价销售占比、销售额排名
- 售后环节:退货率、特殊服务率、残损率
3.3 场:网页
最后谈谈场,就是网页。
促销页、广告页、商品详情页、下单页、支付页 等等。
4 应用举例
业务链条(转化)–用户行为漏斗
- AARRR用户生命周期理论:人+场
获取app—激活注册—留存—转化—传播 - 电商消费的全链路分析:人+货+场
首页—浏览搜索—查看详情—加购—下单—支付—复购,以及在此基础上衍生的链路结构。
差异化运营
- 从用户的活跃度(人)、商品偏好(货)、用户购买决策的不同阶段(场)进行差异化运营
《电商数仓》
ADS 数据应用层
用户行为数据仓库 人
- 活跃用户的各项指标
- 每日活跃设备明细 – 每日活跃设备数 DAU
- 每周活跃设备明细 – 每周活跃设备数 WAU
- 每月活跃设备明细 – 每月活跃设备数 MAU
- 每日新增设备明细 – 每日新增设备数(当日DAU join 次日DAU)
DAU2 left join DAU1 on day2 = date_add(day1,1) where DAU1.uid is null
- 用户留存的各项指标
- 留存用户数(count(每日活跃设备明细-每日新增设备明细))
- 留存用户比率(次日留存用户数/当日DAU)
- 新增用户比率(每日新增设备数/DAU)
业务数据仓库 人货场
- 用户转化的各项指标 这次仅举例计算下单率和支付率
支付流水、订单 – 用户行为宽表(各个维度<环节>的用户总数)
- 用户行为漏斗分析(用户行为宽表/DAU)
- 用户复购的各项指标
订单详情、商品–用户购买商品明细
- 商品复购率(用户购买商品明细:统计用户维和商品维–>用户复购商品N次以上的情况有几种/用户购买商品的情况有几种)
- 销售额的各项指标
- GMV一段时间内的成交总额(用户行为宽表中 以时间为粒度 计算 订单和支付的总数和总金额)