package com.hao.firstdemo.datastruct.threade;
import lombok.Data;
import lombok.Setter;
/**
* @author haoxiansheng
* @data 2020/5/9 23:30
*/
public class ThreadBinaryTreeTest {
public static void main(String[] args) {
//测试
HeroNode root = new HeroNode(1, "java");
HeroNode node2 = new HeroNode(3, "hadoop");
HeroNode node3 = new HeroNode(6, "flink");
HeroNode node4 = new HeroNode(8, "spark");
HeroNode node5 = new HeroNode(10, "shell");
HeroNode node6 = new HeroNode(14, "scala");
// 先手动创建
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
threadedBinaryTree.setRoot(root);
threadedBinaryTree.threadNodes();
System.out.println("10号节点的前驱节点" + node5.getLeft());
System.out.println("10号节点的后驱节点" + node5.getRight());
//遍历线索化二叉树 8、3 10 1 14 6
threadedBinaryTree.threadedList();
}
}
//线索化 功能二叉树
class ThreadedBinaryTree{
@Setter
private HeroNode root;
//为了实现线索化、需要创建要给指向当前节点的前驱节点的指针
//在递归进行线索化时,pre总是保留当前一个节点
private HeroNode pre = null;
//遍历x线索化二叉树的方法
public void threadedList() {
//临时变量
HeroNode node = root;
while (node != null) {
//循环找到leftType==1 后面随着遍历会变化因为当leftType == 1
// 说明按照线索化处理后的有效节点
while (node.getLeftType() == 0) {
node = node.getLeft();
}
System.out.println(node); //打印节点
while (node.getRightType() == 1) { //如果当前节点的右指针指向的是后继节点,就一直输出
node = node.getRight();
System.out.println(node);
}
node = node.getRight(); //替换节点继续遍历
}
}
public void threadNodes() {
this.threadNodes(root);
}
/**
* 编写对二叉树进行中序线索化的方法
* @param node
*/
public void threadNodes(HeroNode node) {
if (node == null) {
return;
}
// 1、先线索化左子树
threadNodes(node.getLeft());
// 2、线索化当前节点
if (node.getLeft() == null) {
node.setLeft(pre); //当前节点的左指针指向前驱节点
node.setLeftType(1); //设置当前的指针类型 指向前驱节点
}
//处理后继节点
if (pre != null && pre.getRight() == null) {
pre.setRight(node); //让前驱节点右指针指向当前节点
pre.setRightType(1); //修改前驱节点的右指针类型
}
// 每处理一个节点后,让当前节点是下一个节点的前驱节点
pre = node;
// 3、线索化右子树
threadNodes(node.getRight());
}
public void delNode(int no) {
if (root != null) {
//判断当前节点是不是要删除的节点
if (root.getNo() == no) {
root = null;
} else {
root.delNode(no); //递归删除
}
} else {
System.out.println("这是一颗空树");
}
}
//前序遍历
public void preOrder() {
if (this.root != null) {
this.root.preOrder();
} else {
System.out.println("二叉树为null");
}
}
//中序遍历
public void infixOrder() {
if (this.root != null) {
this.root.infixOrder();
} else {
System.out.println("二叉树为null");
}
}
//后序遍历
public void postOrder() {
if (this.root != null) {
this.root.postOrder();
} else {
System.out.println("二叉树为null");
}
}
//前序遍历搜索
public HeroNode preOrderSearch(int no) {
if (root != null) {
return this.root.preOrderSearch(no);
} else {
return null;
}
}
//中序遍历搜索
public HeroNode infixOrderSearch(int no) {
if (root != null) {
return this.root.infixOrderSearch(no);
} else {
return null;
}
}
//后序遍历搜索
public HeroNode postOrderSearch(int no) {
if (root != null) {
return this.root.postOrderSearch(no);
} else {
return null;
}
}
}
//先创建HeroNode 节点
@Data
//get set 方法
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认为null
private HeroNode right; //默认为null
private int leftType; // left == 0 指向左子树 1 前驱节点
private int rightType; //0 指向右子树 1 后驱节点
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
/**
* 递归删除节点 这个只是一个开始思路并不完全对 可以先当作一个简单理解
* 1、如果删除的节点是叶子节点,则删除该节点
* 2、如果删除节点是非叶子节点,则删除该子树
*/
public void delNode(int no) {
// 当前节点的左子节点不为null,并且就是要删除的节点,就讲this.left = null 并返回
if (this.left != null && this.left.no == no) {
this.left = null;
return;
}
// 当前节点的右子节点不为null,并且就是要删除的节点,就讲this.right = null 并返回
if (this.right != null && this.right.no == no) {
this.right = null;
return;
}
// 向左子树递归删除
if (this.left != null) {
this.left.delNode(no);
}
// 向右子树递归删除
if (this.right != null) {
this.right.delNode(no);
}
}
/**
* 编写前序遍历的方法
*/
public void preOrder() {
System.out.println(this); //先输出父亲节点
//递归向左子树前序遍历
if (this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if (this.right != null) {
this.right.preOrder();
}
}
/**
* 中序遍历的写法
*/
public void infixOrder() {
//递归向左子树中序遍历
if (this.left != null) {
this.left.infixOrder();
}
//输出父节点
System.out.println(this);
//递归向左子树中序遍历
if (this.right != null) {
this.right.infixOrder();
}
}
/**
* 后序遍历
*/
public void postOrder() {
//递归向左子树后序遍历
if (this.left != null) {
this.left.postOrder();
}
//递归向左子树后序遍历
if (this.right != null) {
this.right.postOrder();
}
//输出父节点
System.out.println(this);
}
/**
* 前序遍历查找
* @param no
* @return 如果存在就返回HeroNode 否则返回null
*/
public HeroNode preOrderSearch(int no) {
System.out.println("比较次数");
if (this.no == no) {
return this;
}
HeroNode resNode = null;
if (this.left != null) { //判断当前节点是否为null, 如果没有找到返回null
resNode = this.left.preOrderSearch(no);
}
if (resNode != null) { //说明找到了
return resNode;
}
if (this.right != null) {
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
/**
* 中序遍历查找
* @param no
* @return
*/
public HeroNode infixOrderSearch(int no) {
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.infixOrderSearch(no);
}
if (resNode != null) {
return resNode;
}
System.out.println("比较次数");
if (this.no == no) {
return this;
}
if (this.right != null) {
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
/**
* 后序遍历
* @param no
* @return
*/
public HeroNode postOrderSearch(int no) {
HeroNode resNode = null;
//左子树找
if (this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if (resNode != null) {
return resNode;
}
//右子树找
if (this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if (resNode != null) {
return resNode;
}
//当前节点
System.out.println("比较次数");
if (this.no == no) {
return this;
}
return resNode;
}
}