最大公约数 | Greatest Common Divisor | C/C++实现

问题描述

请编写一个程序,输入两个自然数x、y,求它们的最大公约数

对于两个整数x和y,如果x/d和y/d余数都为0,则d称为x和y的公约数,其中最大的称为x和y的最大公约数

输入:
输入x、y,用1个空格隔开,占1行
输出:
输出最大的公约数,占1行
限制:
1 ≤ x,y ≤ 1 0 9 10^9 109
提示:
对于整数x、y,如果x ≥ y,则x与y的最大公约数等于y与x%y的最大公约数

输入示例

147 105

输出示例

21

讲解

求最大公约数的简单算法如下

求最大公约数的简单算法:

gcd(x, y)
	n = (x与y中较小的一个)
	for d从n到1
		if d是x和y的约数
			return d

该算法将x和y中较小的一方用作n,让d从n自减至1,检查其是否能同时整除x和y,如果能则返回当时的d

这个算法虽然能正确地输出结果,但最坏的情况下要进行n次除法,不够理想

欧几里得算法又称辗转相除法,利用了当x ≥ y时,gcd(x, y)等于gcd(y, x除以y之后的余数)这条定理,是一种快速求x与y最大公约数的算法,对于gcd(a, b),当a等于b时,a就是给定的整数x与y的最大公约数。欧几里得算法可以用下面的方法实现

欧几里得算法:

gcd(x, y)
	if x < y
		交换x和y使x >= y

	while y > 0
		r = x % y //x除以y之后的余数
		x = y
		y = r

	return x

复杂度大致为 O ( l o g b ) O(logb) O(logb)

AC代码如下

用递归求(C)
#include<stdio.h>

//用递归函数求最大公约数
int gcd(int x, int y) {
	return y ? gcd(y, x % y) : x;
} 

int main(){
	int a, b;
	scanf("%d %d", &a, &b);
	printf("%d\n", gcd(a, b));
	
	return 0;
}
用循环求(C++)
#include<iostream>
#include<algorithm>
using namespace std;

//用循环求最大公约数
int gcd(int x, int y) {
	int r;
	if(x < y) swap(x, y); //保证y < x
	
	while(y > 0) {
		r = x % y;
		x = y;
		y = r;
	} 
	return x;
} 

int main(){
	int a, b;
	cin>>a>>b;
	cout<<gcd(a, b)<<endl;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值