问题描述
请编写一个程序,输入两个自然数x、y,求它们的最大公约数
对于两个整数x和y,如果x/d和y/d余数都为0,则d称为x和y的公约数,其中最大的称为x和y的最大公约数
输入:
输入x、y,用1个空格隔开,占1行
输出:
输出最大的公约数,占1行
限制:
1 ≤ x,y ≤
1
0
9
10^9
109
提示:
对于整数x、y,如果x ≥ y,则x与y的最大公约数等于y与x%y的最大公约数
输入示例
147 105
输出示例
21
讲解
求最大公约数的简单算法如下
求最大公约数的简单算法:
gcd(x, y)
n = (x与y中较小的一个)
for d从n到1
if d是x和y的约数
return d
该算法将x和y中较小的一方用作n,让d从n自减至1,检查其是否能同时整除x和y,如果能则返回当时的d
这个算法虽然能正确地输出结果,但最坏的情况下要进行n次除法,不够理想
欧几里得算法又称辗转相除法,利用了当x ≥ y时,gcd(x, y)等于gcd(y, x除以y之后的余数)这条定理,是一种快速求x与y最大公约数的算法,对于gcd(a, b),当a等于b时,a就是给定的整数x与y的最大公约数。欧几里得算法可以用下面的方法实现
欧几里得算法:
gcd(x, y)
if x < y
交换x和y使x >= y
while y > 0
r = x % y //x除以y之后的余数
x = y
y = r
return x
复杂度大致为 O ( l o g b ) O(logb) O(logb)。
AC代码如下
用递归求(C)
#include<stdio.h>
//用递归函数求最大公约数
int gcd(int x, int y) {
return y ? gcd(y, x % y) : x;
}
int main(){
int a, b;
scanf("%d %d", &a, &b);
printf("%d\n", gcd(a, b));
return 0;
}
用循环求(C++)
#include<iostream>
#include<algorithm>
using namespace std;
//用循环求最大公约数
int gcd(int x, int y) {
int r;
if(x < y) swap(x, y); //保证y < x
while(y > 0) {
r = x % y;
x = y;
y = r;
}
return x;
}
int main(){
int a, b;
cin>>a>>b;
cout<<gcd(a, b)<<endl;
return 0;
}