第十六章:目标规划

本文深入探讨了目标规划的概念,包括正负偏差变量、绝对约束与目标约束、优先因子等,并介绍了目标规划的数学模型及求解算法。此外,还详细讲解了使用Matlab的fgoalattain函数进行多目标规划的方法。

16.1 目标规划的数学模型

16.1.1 概念
  • 正、负偏差变量
  • 绝对(刚性)约束和目标约束
  • 优先因子(优先等级)与权系数
  • 目标规划的目标函数
16.1.2 一般数学模型

在这里插入图片描述

16.2 求解目标规划的序贯算法

根据优先级的先后次序,将目标规划问题分解成一系列的单目标规划问题,然后再依次求解。
需要用到Lingo程序。

16.3 多目标规划的Matlab解法

使用fgoalattain函数
M函数

function F=Fun(x);
F=[-100*x(1)-90*x(2)-80*x(2)-70*x(4)
3*x(2)+2*x(4)];
a=[-1 -1  0  0
   0  0  -1 -1
   3  0   2  0
   0  3   0  2];
b=[-30 -30 120 48]';
c1=[-100 -90 -80 -70];
c2=[0 3 0 2];
[x1,g1]=linprog(c1,a,b,[],[],zeros(4,1))  
[x2,g2]=linprog(c2,a,b,[],[],zeros(4,1))  
g3=[g1;g2];  
[x,fval]=fgoalattain('Fun',rand(4,1),g3,abs(g3),a,b,[],[],zeros(4,1))
%这里权重weight=目标goal的绝对值

可能每次运行的结果都是不一样的,不过差异不大
下面使用匿名函数求解:

clc,clear
a=[-1 -1  0  0
   0  0  -1 -1
   3  0   2  0
   0  3   0  2];
b=[-30 -30 120 48]';
c1=[-100 -90 -80 -70];
c2=[0 3 0 2];
fun=@(x) [c1;c2]*x;  
[x1,g1]=linprog(c1,a,b,[],[],zeros(4,1))  
[x2,g2]=linprog(c2,a,b,[],[],zeros(4,1))  
g3=[g1;g2]; 
[x,fval]=fgoalattain(fun,rand(4,1),g3,abs(g3),a,b,[],[],zeros(4,1))

16.4 目标规划模型的实例

均需使用Lingo软件实现,由于对其不熟悉,此处便不予详解。

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值