使用mathematica进行概率模型求解

题目

1、概率模型的求解

(1)某车间生产滚珠,从长期实践中知道,滚珠直径可以认为服从正态分布。从某天产品中任取6个测得直径如下(单位:mm):

15.6      16.3        15.9        15.8        16.2        16.1

若已知直径的方差是0.06,试求总体均值的置信度为0.95的置信区间与置信度为0.90的置信区间。

 

(2)某旅行社为调查当地旅游者的平均消费额,随机访问了100名旅游者,得知平均消费额元,根据经验,已知旅游者消费服从正态分布,且标准差元,求该地旅游者平均消费额的置信度为的置信区间。

 

(3)有一大批袋装糖果,现从中随机地取出16袋,称得重量(以克计)如下:

506 508 499 503 504 510 497 512

514 505 493 496 506 502 509 496

设袋装糖果的重量近似地服从正态分布, 试求置信度分别为0.95与0.90的总体均值的置信区间。

 

(4)从一批袋装食品中抽取16袋,重量的平均值为样本标准差为假设袋装重量近似服从正态分布,求总体均值的置信区间()。

 

(5)AB两个地区种植同一型号的小麦,现抽取了19块面积相同的麦田,其中9块属于地区A,另外10块属于地区B,测得它们的小麦产量(以kg计)分别如下:

地区A:  100   105   110   125   110   98   105   116   112

地区B:  101   100   105   115   111   107  106   121   102   92

设地区A的小麦产量,地区B的小麦产量,均未知,试求这两个地区小麦的平均产量之差的95%和90%的置信区间。

 

(6)比较AB两种灯泡的寿命,从A种取80只作为样本,计算出样本均值样本标准差从B种取100只作为样本,计算出样本均值样本标准差假设灯泡寿命服从正态分布,方差相同且相互独立,求均值差的置信区间()。

 

(7)有一大批袋装糖果,现从中随机地取出16袋,称得重量(单位:g)如下:

506 508 499 503 504 510 497 512

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlexGeek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值