题目
1、概率模型的求解
(1)某车间生产滚珠,从长期实践中知道,滚珠直径可以认为服从正态分布。从某天产品中任取6个测得直径如下(单位:mm):
15.6 16.3 15.9 15.8 16.2 16.1
若已知直径的方差是0.06,试求总体均值的置信度为0.95的置信区间与置信度为0.90的置信区间。
(2)某旅行社为调查当地旅游者的平均消费额,随机访问了100名旅游者,得知平均消费额元,根据经验,已知旅游者消费服从正态分布,且标准差元,求该地旅游者平均消费额的置信度为的置信区间。
(3)有一大批袋装糖果,现从中随机地取出16袋,称得重量(以克计)如下:
506 508 499 503 504 510 497 512
514 505 493 496 506 502 509 496
设袋装糖果的重量近似地服从正态分布, 试求置信度分别为0.95与0.90的总体均值的置信区间。
(4)从一批袋装食品中抽取16袋,重量的平均值为样本标准差为假设袋装重量近似服从正态分布,求总体均值的置信区间()。
(5)A,B两个地区种植同一型号的小麦,现抽取了19块面积相同的麦田,其中9块属于地区A,另外10块属于地区B,测得它们的小麦产量(以kg计)分别如下:
地区A: 100 105 110 125 110 98 105 116 112
地区B: 101 100 105 115 111 107 106 121 102 92
设地区A的小麦产量,地区B的小麦产量,均未知,试求这两个地区小麦的平均产量之差的95%和90%的置信区间。
(6)比较A、B两种灯泡的寿命,从A种取80只作为样本,计算出样本均值样本标准差从B种取100只作为样本,计算出样本均值样本标准差假设灯泡寿命服从正态分布,方差相同且相互独立,求均值差的置信区间()。
(7)有一大批袋装糖果,现从中随机地取出16袋,称得重量(单位:g)如下:
506 508 499 503 504 510 497 512