zzuli-1728-社交网络 (组合数,期望)

点击打开链接

题目描述

 

输入

输出

样例输入

2
2 1
0 1
1 0
3 1
0 1 1
1 0 1
1 1 0

样例输出

0.500
1.125


是要求出社交花 数量 的期望。与 >= k个男人有关系的女性是交际花。

思路是:求出每个人 是 社交花的期望,加起来,就是ans。

用一个 pic[][]  存图,pic[i] 是第 i 个人的关系情况。

比如:pic[i]  与 m 个人有关系 ,当 m >= k,这个人才有可能是 交际花。

这个人的关系中(包括这个人),性别的总种类数是 2^(m + 1).    ----分母。

分子----m个人中有 k 个那人的种类 + m 中有 (k+1)个男人的种类.......+ (k + j)。。。。(k + j) <=n..

..

学到了组合数打表

#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;

int dp[50][50];

void Init()
{
    for(int i = 0;i < 40;i ++)
    {
        dp[i][1] = i;
        dp[i][0] = 1;
    }
    for(int i = 2;i < 40;i ++)
    {
        for(int j = 2;j <= i;j ++)
        {
            dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
        }
    }
}


int pic[40][40];
int friden_i[40];   //记录与第 i 个人有关系的人数

int main()
{
    int t;
    cin>>t;
    Init();
    while(t --)
    {
        int n,k;
        double ans = 0;
        memset(friden_i,0,sizeof(friden_i));  //别忘了每次初始化
        cin>>n>>k;
        //存图
        for(int i = 1;i <= n;i ++)
        {
            for(int j = 1;j <= n;j ++)
            {
                cin>>pic[i][j];
                if(pic[i][j])
                    friden_i[i] ++;
            }
        }

        for(int i = 1;i <= n;i ++)
        {
            for(int j = k;j <= n;j ++)
            {
                ans += (double)dp[friden_i[i]][j] / pow(2,friden_i[i] + 1);
            }
        }
        printf("%.3lf\n",ans);
    }
    return 0;
}

这是一道经典的位运算题目,考察对二进制的理解和位运算的熟练程度。 题目描述: 给定一个长度为 $n$ 的数组 $a$,初始时每个数的值都为 $0$。现在有 $m$ 个操作,每个操作为一次询问或修改。 对于询问,给出两个整数 $l,r$,求 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 的值。 对于修改,给出一个整数 $x$,表示将 $a_x$ 的值加 $1$。 输入格式: 第一行两个整数 $n,m$。 接下来 $m$ 行,每行描述一次操作,格式如下: 1 l r:表示询问区间 $[l,r]$ 的异或和。 2 x:表示将 $a_x$ 的值加 $1$。 输出格式: 对于每个询问操作,输出一个整数表示答案,每个答案占一行。 数据范围: $1 \leq n,m \leq 10^5$,$0 \leq a_i \leq 2^{30}$,$1 \leq l \leq r \leq n$,$1 \leq x \leq n$ 输入样例: 5 5 2 1 2 3 1 2 4 2 2 1 1 5 输出样例: 0 2 解题思路: 对于询问操作,可以利用异或的性质,即 $a \oplus b \oplus a = b$,将 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 转化为 $(a_1 \oplus \cdots \oplus a_{l-1}) \oplus (a_1 \oplus \cdots \oplus a_r)$,因为两个前缀异或后的结果可以相互抵消,最后的结果即为 $a_1 \oplus \cdots \oplus a_{l-1} \oplus a_1 \oplus \cdots \oplus a_r = a_l \oplus \cdots \oplus a_r$。 对于修改操作,可以将 $a_x$ 对应的二进制数的每一位都分离出来,然后对应位置进行修改即可。由于只有加 $1$ 操作,所以只需将最后一位加 $1$ 即可,其余位不变。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值