python 图片相似度计算

import os
os.environ['KERAS_BACKEND']='tensorflow'
import numpy as np
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input
from keras.preprocessing import image
from keras.utils.data_utils import get_file
import ssl
ssl._create_default_https_context = ssl._create_unverified_context # 下载模型的时候不想进行ssl证书校验

# !export TF_CPP_MIN_LOG_LEVEL=2  # 屏蔽警告信息 (这是在jupyter中执行的shell命令,可以去掉这行不影响结果)

# 初始化VGG16模型 include_top=False 是指不保留顶层的3个全连接网络层
model = VGG16(weights='imagenet', include_top=False)

# # 创建模型
#     # Create model.
#     model = Model(inputs, x, name='vgg16')
#
#     # 加载权重
#     # load weights
#     if weights == 'imagenet':
#         if include_top:
#             weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5',
#                                     WEIGHTS_PATH,
#                                     cache_subdir='models')
#         else:
#             weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
#                                     WEIGHTS_PATH_NO_TOP,
#                                     cache_subdir='models')
#         model.load_weights(weights_path)
WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
def get_feature(path):
    """
    VGG16模型抽取图片特征
    """
    # 图片转成PIL的Image对象,并且对图片做了缩放
    img = image.load_img(path, target_size=(224, 224))

    # 图片转成矩阵、并扩充了维度、最后是预处理
    predict_img = preprocess_input(np.expand_dims(image.img_to_array(img),0))

    # 丢入vgg16网络做特征抽取,最后返回特征并展平成一维向量方便计算余弦相似度,flatten是numpy.ndarray.flatten的一个函数,即返回一个一维数组。
    return model.predict(predict_img).flatten()

def cos_sim(a, b):
    """
    计算两个向量之间的余弦相似度
    """
    a = np.mat(a)
    b = np.mat(b)
    return float(a * b.T) / (np.linalg.norm(a) * np.linalg.norm(b))
if __name__ == '__main__':

    image_path = ['D:\\9.jpg', 'D:\\10.jpg']
    ft1, ft2 = [get_feature(p) for p in image_path]

    print(cos_sim(ft1, ft2))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值