《机器学习实战》个人学习记录笔记(二)———k-近邻算法实战之约会网站配对效果判定

第二章 k-近邻算法

PS:个人笔记 根据《机器学习实战》这本书,Jack-Cui的博客,以及深度眸的视频进行学习

k-近邻算法的一般流程

①收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
②准备数据:使用Python解析、预处理数据。
③分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
④测试算法:计算错误率。
⑤使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类。

1.收集数据

⭐⭐⭐UCI机器学习资料库,非常重要的一个资料库



2 准备数据:数据解析

在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。

import numpy as np

""" 
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 

Parameters: 
    filename - 文件名 
Returns: 
    returnMat - 特征矩阵 
    classLabelVector - 分类Label向量 
"""

def file2matrix(filename):                              # 函数作用就是打开并解析文件,对数据进行分类
    fr = open(filename)                                 # 打开文件,文件名filename
    arrayOLines = fr.readlines()                        # 读取文件所有内容,一行一行的读取
    numberOfLines = len(arrayOLines)                    # 得到文件行数;这里用的文本是1000行
    returnMat = np.zeros((numberOfLines, 3))            # 返回的NumPy矩阵,解析完成的数据:(1000,3)的0矩阵
    classLabelVector = []                               # 返回的分类标签向量,里面应该是0,1,2;后面进行处理
    index = 0                                           # 行的索引值
    for line in arrayOLines:
        line = line.strip()                             # s.strip(),删除空白符(包括'\n','\r','\t',' ')
        listFromLine = line.split('\t')                 # 使用s.split()将字符串根据'\t'分隔符进行切片。
        returnMat[index, :] = listFromLine[0:3]         # [0:3]=[0,1,2]将数据前三列提取出来,存放到returnMat的NumPy矩阵[0,:]中,也就是特征矩阵
        if listFromLine[-1] == 'didntLike':             # listFromLine一共是4列,最后一列是类别列
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1                                      # 就是一行一行的填入特征值,returnMat[index,:]是特征矩阵
    return returnMat, classLabelVector


""" 
Parameters: 
    无 
Returns: 
    无 

Modify: 
    2017-03-24 
"""
if __name__ == '__main__':                                  # main函数
    filename = "datingTestSet.txt"                          # 打开的文件名,放在一个文件夹下,就不用考虑路径了
    datingDataMat, datingLabels = file2matrix(filename)     # 打开并处理数据,用到上面写的数据处理函数
    print(datingDataMat)                                    # 返回特征矩阵和分类向量
    print(datingLabels)


3 分析数据:数据可视化

编写名为showdatas的函数,用来将数据可视化
from matplotlib.font_manager import FontProperties      #matplotlib中的一个字体管理器——matplotlib.Font_manager,FontProperties(fname)可以指定一个字体文件作为图表使用的字体
import matplotlib.pyplot as plt                         #pyplot模块提供了一套和MATLAB类似的绘图API
import numpy as np
import matplotlib.lines as mlines
def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = np.zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector

"""
Parameters:
    datingDataMat - 特征矩阵
    datingLabels - 分类Label
Returns:
    无
"""
def showdatas(datingDataMat, datingLabels):                                #函数是数据可视化
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)   #设置汉字格式
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))    #subplots()函数的作用将fig画布分隔,不共享x轴和y轴,fig画布的大小为(13,8)当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    numberOfLabels = len(datingLabels)                                     #数据类别的个数 也就是1000个
    LabelsColors = []                                                      #对类别分配颜色
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')                                   #1——黑色,2——橘色,3——红色
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)                #scatter()是散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)     #set_title()是设置标题,x轴label,y轴label
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)                          #set_xlabel()设置X的标签
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)                            #set_ylabel()设置y的标签
    plt.setp(axs0_title_text, size=9, weight='bold', color='red')                                                   #setp()该命令可以对一个列表或者单个对象进行设置,并且提供了matlab式的使用方法
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')

    axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')

    axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) 
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    
    didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')  #设置图例,使用Line2D实例的set方法
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')

    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses]) #legend()添加图例
    axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
    plt.show()  #show()函数显示图片

"""
Parameters:
    无
Returns:
    无
"""
if __name__ == '__main__':   
    filename = "datingTestSet.txt"
    datingDataMat, datingLabels = file2matrix(filename)
    showdatas(datingDataMat, datingLabels)      #可视化函数

可视化简单结论:通过数据可以很直观的发现数据的规律,比如以玩游戏所消耗时间占比与每年获得的飞行常客里程数,只考虑这二维的特征信息,给我的感觉就是海伦喜欢有生活质量的男人。

4 准备数据:数据归一化

 在处理不同取值范围的特征值时,我们通常采用的方法是将数值归一化

公式:newValue = (oldValue - min) / (max - min)

import numpy as np

def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = np.zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector

"""
Parameters:
    dataSet - 特征矩阵
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值
"""
def autoNorm(dataSet):                                     #对数据进行归一化,
    minVals = dataSet.min(0)                               #获得数据的最小值,min()方法返回列表元素中的最小值。对于dataSet这个矩阵返回每一列的最小值,所以返回的应该是一个一维的列表
    maxVals = dataSet.max(0)                               #获得数据的最大值, max()方法返回列表元素中的最大值。⭐max(1)则是对于行吗?
    ranges = maxVals - minVals                             #最大值和最小值的范围,得出的是一个(1,3)的数组
    normDataSet = np.zeros(np.shape(dataSet))              #shape(dataSet)返回dataSet的矩阵行列数(1000,3)的0矩阵
    m = dataSet.shape[0]                                   #返回dataSet的行数1000
    normDataSet = dataSet - np.tile(minVals, (m, 1))       #原始值减去最小值 ;(1,3)的最小值矩阵按照(1000,1)的规则复制
    normDataSet = normDataSet / np.tile(ranges, (m, 1))    #除以最大和最小值的差,得到归一化数据
    return normDataSet, ranges, minVals                    #返回归一化数据结果,数据范围,最小值

"""
Parameters:
    无
Returns:
    无
"""
if __name__ == '__main__':   
    filename = "datingTestSet.txt"
    datingDataMat, datingLabels = file2matrix(filename)
    normDataSet, ranges, minVals = autoNorm(datingDataMat)
    print(normDataSet)
    print(ranges)
    print(minVals)

5 测试算法:验证分类器

机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。⭐需要注意的是,10%的测试数据应该是随机选择的
import numpy as np
import operator

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndices = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndices[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]


def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = np.zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector


def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = np.zeros(np.shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    return normDataSet, ranges, minVals


"""
函数说明:分类器测试函数

Parameters:
    无
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值
"""
def datingClassTest():
    filename = "datingTestSet.txt"                        #打开文件名
    datingDataMat, datingLabels = file2matrix(filename)   #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
    hoRatio = 0.10                                        #百分之十的测试集
    normMat, ranges, minVals = autoNorm(datingDataMat)    #数据归一化,返回归一化后的矩阵,数据范围,数据最小值
    m = normMat.shape[0]                                  #获得normMat的行数,也就是1000
    numTestVecs = int(m * hoRatio)                        #百分之十的测试数据的个数  100个
    errorCount = 0.0                                      #分类错误计数,用来统计错误率

    for i in range(numTestVecs):                          #前numTestVecs(100)个数据作为测试集,后m-numTestVecs(900)个数据作为训练集
        classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],datingLabels[numTestVecs:m], 4)     #normMat[i,:]第一维下标为i的所有值;normMat[100:1000,:]表示900的训练集;datingLabels[100:1000]取后900个类别标签;k=4
        print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))  #显示分类类别和真是类别
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

if __name__ == '__main__':
    datingClassTest()
 ⭐X[:,0]是numpy中数组的一种写法,表示对一个二维数组,取该二维数组第一维中的所有数据,第二维中取第0个数据,直观来说,X[:,0]就是取所有行的第0个数据, X[:,1] 就是取所有行的第1个数据。



可以改变函数datingClassTest内变量hoRatio和分类器k的值,检测错误率是否随着变量值的变化而增加。依赖于分类算法、数据集和程序设置,分类器的输出结果可能有很大的不同。⭐K的取值取奇数用于投票

6 使用算法:构建完整可用系统

import numpy as np
import operator

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    sortedDistIndices = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndices[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]


def file2matrix(filename):
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    returnMat = np.zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLines:
        line = line.strip()
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector


def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = np.zeros(np.shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    return normDataSet, ranges, minVals

"""
函数说明:通过输入一个人的三维特征,进行分类输出

Parameters:
    无
Returns:
    无
"""
def classifyPerson():
    resultList = ['讨厌','有些喜欢','非常喜欢']                #结果列表
    precentTats = float(input("玩视频游戏所耗时间百分比:"))    #三维特征用户输入
    ffMiles = float(input("每年获得的飞行常客里程数:"))
    iceCream = float(input("每周消费的冰激淋公升数:"))
    filename = "datingTestSet.txt"                           #打开文件名
    datingDataMat, datingLabels = file2matrix(filename)      #打开并处理数据
    normMat, ranges, minVals = autoNorm(datingDataMat)       #训练集归一化   
    inArr = np.array([precentTats, ffMiles, iceCream])       #生成NumPy数组,测试集 
    norminArr = (inArr - minVals) / ranges                   #测试集归一化
    classifierResult = classify0(norminArr, normMat, datingLabels, 3)     #返回分类结果
    print("你可能%s这个人" % (resultList[classifierResult-1]))

if __name__ == '__main__':
    classifyPerson()

阅读更多
上一篇《机器学习实战》个人学习记录笔记(一)———K-近邻算法
下一篇《机器学习实战》个人学习记录笔记(三)———k-近邻算法实战之sklearn手写数字识别
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭