数学基础(三)——凸优化

本文深入探讨了凸集和凸函数的概念,包括仿射集、内点、凸集、锥、超平面、凸包、凸函数的性质,以及凸优化问题的基础和解法,如KKT条件和对偶问题。内容涵盖了线性分式函数、Fenchel不等式和共轭函数等关键点。
摘要由CSDN通过智能技术生成

                                        凸优化

ps: 个人笔记 根据视频和PDF学习

思考凸集和凸函数

y=x 2 是凸函数,函数图像上位于y=x 2 上方的区域构成凸集。
    凸函数图像的上方区域,一定是凸集;
    一个函数图像的上方区域为凸集,则该函数是凸函数

    稍后给出上述表述的形式化定义。

因此,学习凸优化,考察凸函数,先从凸集及其性质开始。


(超)几何体的向量表达

给定二维平面上两个定点:a(x 1 ,y 1 ),b(x 2 ,y 2 ),则:
     直线:x=θa + (1-θ)b, θ∈R
     线段:x=θa + (1-θ)b, θ∈[0,1]
 一般的,f(x,y)=0表示定义域在R 2 的曲线
        特殊的,y=g(x)表示定义域在R的曲线,f(x,y)=y-g(x)
一般的,f(x,y,z)=0表示定义域在R 3 的曲面
        特殊的,z=h(x,y)表示定义域在R 2 的曲面,f(x,y,z)=z-h(x,y)
上述表达方式可以方便的推广到高维
        记x=(u 1 ,u 2 ,…u n ),则f(x)=0表示定义域在R n 的超曲面。

        不特殊说明,后面将使用x1表示向量,如:定义两个点x1,x2,则x=θx1 + (1-θ)x2, θ∈R表示经过这两点的直线


仿射集(Affine set)

定义:通过集合C中任意两个不同点的直线仍然在集合C内,则称集合C为仿射集。


仿射集的例子:直线、平面、超平面
    超平面:Ax=b
    f(x)=0表示定义域在R n 的超曲面:令f(x)=Ax-b,则f(x)=0表示“截距”为-b的超平面。
    三维空间的平面是二维的;四维空间的平面是几维的?
        n维空间的n-1维仿射集为n-1维超平面。

    后面将继续考察超平面的定义。


仿射包

仿射包:包含集合C的最小仿射集


仿射维数: 仿射包的维数。
    三角形的仿射维数为2
    线段的仿射维数为1

    球的仿射维数为3


内点和相对内点

给定一个集合C,如何定义哪些点在“边界”上,哪些点在内部?
     直观的想法:对于集合C中的某个点x,以x为中心做半径为r的球(r>0,且非常小),若球和C的交集完全落在C的内部(即:是C的子集),则x为C的内点。

    将该概念用在C的仿射集aff C上,则为相对内点。一般用relint C表示C的相对内点。


B(x,r)表示以x为球心,r为半径做一个球。affC是仿射包

举例


PS:这里C的内点是空的,理解为X3=0,相当于一个瓶是空的,或者说没有厚度,所以说是空的


凸集

集合C内任意两点间的线段均在集合C内,则称集合C为凸集



仿射集和凸集的关系

因为仿射集的条件比凸集的条件强,所以,仿射集必然是凸集。


凸集

ps:上面正方形有些边界没有,不是凸集


凸包

集合C的所有点的凸组合形成的集合,叫做集合C的凸包。


集合C的凸包是能够包含C的最小的凸集。


凸包的例子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值