智能计算系统笔记——第一章概述
参考:《智能计算系统》陈云霁,李玲,李威,郭崎,杜子东[著]
1.1 人工智能
1.1.1什么是人工智能
人工智能:人制造的机器所表现出来的智能。
强人工智能或通用人工智能:具备与人类同等智慧,或超越人类的人工智能,能表现人类所具有的所有智能行为。
弱人工智能:能完成某种特定任务的人工智能,计算机科学的非平凡应用。
1.1.2人工智能发展历史
人工智能萌芽(20世纪40年代):
1943年McCulloch和Pitts提出了首个人工神经元模型,1949年Hebb提出了Hebbian Learning规则对神经元之间的连接强度进行更新。
第一次热潮(1956年至20世纪60年代):
1956年达特茅斯会议驱动人工智能热潮以符号逻辑为出发点,即符号主义。Rosenblatt提出了感知机模型。
第二次热潮(1975年至1991年):
1982年日本启动五代机计划作为标志。反向传播学习算法提出使连接主义神经网络成为焦点。隐马尔可夫模型用于语音识别,信息论用于机器翻译,贝叶斯网络用于非确定的推理和专家系统。
第三次热潮(2006年至今):
2006年Hinton和Salakhutdinov的多隐层神经网络吹响了深度学习走向繁荣的号角。
1.1.3人工智能的主要方法
行为主义:基于控制论,构建感知-动作型控制系统。
符号主义:基于符号逻辑的方法,用逻辑表示知识和求解问题。
连接主义:基于大脑中神经元细胞连接的计算模型,用人工神经网络来拟合智能行为。
1.2智能计算系统
1.2.1什么是智能计算系统
智能计算系统是智能的物质载体,现阶段智能计算系统通常是集成CPU和智能计算芯片的异构系统,软件上通常包括一套面向开发者的智能计算编程环境(包括编程框架和编程语言)。
1.2.2为什么需要智能计算系统
通用CPU为中心的传统计算系统的速度和能效远远达不到智能应用的需求。
1.2.3智能计算系统的发展
第一代智能计算系统:1980年代,面向符号主义智能处理的专用计算机(Prolog机,LISP机)。
第二代智能计算系统:2010年代,面向连接主义智能处理的专用计算机(深度学习计算机)。
第三代智能计算系统:未来强人工智能/通用人工智能的载体。