御坂美琴
misaka是呱太爷爷的小粉丝,呱太爷爷有一句话说的好:"一尺之棰,日取其半,万世不竭"。
misaka现在有 n 个呱太玩偶放在一堆,每一次操作,misaka会选择当前个数 > 1 的一堆呱太玩偶。并将这一堆呱太玩偶分成 和 两堆,x 是当前这一堆玩偶的个数。现在 misaka 想将玩偶分成 m 堆,其中第 i 堆呱太玩偶的个数是 ai ,你需要告诉 misaka 是否能通过若干次操作将玩偶分成指定的这 m 堆。如果可以输出 ,否则输出 。
输入描述:
第一行两个数 n, m 。
接下来一行 m 个数 ai 。
输出描述:
输出共一个字符串 ,表示 misaka 能否将玩偶分成指定的 m 堆。
输入
4 1
5
输出
ham
备注:
1 ≤ n ≤ 10^18, 1 ≤ m ≤ 10^5, 1 ≤ ai ≤ 10^18。
题意:
给定n个物品,每次可以将物品分成数量为和的两堆物品,问是否可以分出一个给定长度为m的物品数量序列.
题解:
每次都能分成两堆,用队列模拟分堆,讲可能出现的情况标记一下,最后与所给序列对比,如果完全一样则输出misaka否则输出ham
最后还需要特判一下 所给序列的和不超过n (本以为这个和会爆ll,然而并没有)
这个题刚开是没想法,一直以为是找规律,主要是看到数据很大,但是没想到他可以用队列模拟每次一半,可以优化到log级别
另一个坑就是容易爆内存,刚开始的bfs想法是
先把所出现的数都先标记一下,然后与bfs模拟出来的结果相比较,如果相同就cnt++,最后看看cnt是否等于m
然而这种想法,占用内存太大,,,,
总之一句话,太菜。。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define linf 0x3f3f3f3f3f3f3f3f
ll a[100005];
map<ll,bool>vis;
ll cnt;
ll bfs(ll x)
{
queue<ll>Q;
Q.push(x);
while(!Q.empty())
{
ll u=Q.front();
Q.pop();
if(vis[u])continue;//如果没有会爆内存
vis[u]=1;
Q.push(u/2);
Q.push(u-u/2);
}
return 0;
}
int main()
{
ll n,m;
ll sum=0;
scanf("%lld%lld",&n,&m);
for(int i=1; i<=m; i++)
{
scanf("%lld",&a[i]);
sum+=a[i];
}
if(sum!=n)
{
printf("ham\n");
return 0;
}
bfs(n);
int flag=1;
for(int i=1; i<=m; i++)
{
if(!vis[a[i]])
{
flag=0;
break;
}
}
if(flag)printf("misaka\n");
else printf("ham\n");
return 0;
}