小乐乐和25(找规律)

                                          小乐乐和25

小乐乐特别喜欢25这个数字,他想把所有的数字都变成25的倍数。
现在小乐乐得到一个数字,想问问你最少用几次操作才可以把这个数字改造成25的倍数。
对于一次操作我们可以把相邻的两位做交换,比如123经过一次操作之后就可以变成213或者132。

题目描述

小乐乐特别喜欢25这个数字,他想把所有的数字都变成25的倍数。
现在小乐乐得到一个数字,想问问你最少用几次操作才可以把这个数字改造成25的倍数。
对于一次操作我们可以把相邻的两位做交换,比如123经过一次操作之后就可以变成213或者132。

输入描述:

多组数据输入
对于每组数据,只有一行输入一个整数n(1 <= n <= 1000000000)。

输出描述:

如果经过最少x次操作后,这个数就变成了25的倍数,那么输出x;
如果这个数无论怎么变化都变不成25的倍数,输出-1.

输入

2018

输出

-1

输入

2020

输出

1

说明

经过一次之后变成2200

题解:

通过找规律发现要想是25的倍数那么末尾一定是 00 25 50 75

所以暴力枚举即可

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
const int mx = 1e9+5;

int main()
{
    ll n;
    string ss;
    while(cin>>ss)
    {

        int l=ss.length();
        int t=-1;
        int f=-1;
        int s=-1;
        int z1=-1;
        int z2=-1;
        for(int i=0;i<l;i++)
        {
            if(ss[i]=='2')t=i;
            if(ss[i]=='5')f=i;
            if(ss[i]=='7')s=i;
            if(ss[i]=='0')z1=z2,z2=i;
        }
        int ans=inf;
        l--;
        if(t>=0 && f>=0)///2 5
        {
            if(f>t)ans=min(ans,l-f+l-t-1);
            else ans=min(ans,l-f+l-t);
        }
        if(s>=0 && f>=0)///7 5
        {
            if(f>s)ans=min(ans,l-f+l-s-1);
            else ans=min(ans,l-f+l-s);
        }
        if(f>=0 && z2>=0)///5 0
        {
            if(z2>=f)ans=min(ans,l-f+l-z2-1);
            else ans=min(ans,l-f+l-z2);
        }
        if(z1>=0 && z2>=0)///0 0
            ans=min(ans,l-z1+l-z2-1);
        if(ans!=inf)printf("%d\n",ans);
        else printf("-1\n");
    }



    return 0;
}

 

 

### 回答1: 我们可以用两个指针分别从前向后从后向前扫描这些书,分别出满足条件的书,然后到它们的共同部分即可。 具体来说,我们可以设从前向后扫描的指针为 i,从后向前扫描的指针为 j,然后分别用 step1=3 step2=4 表示珂珂乐乐喜欢的书的间隔。每次循环中,我们将 i j 分别移动 step1 step2 步,直到 i 或 j 超出了数组的边界为止。在移动指针的过程中,如果当前指向的书是珂珂乐乐共同喜欢的,我们就将计数器加 1。最后返回计数器的值即可。 以下是 C++ 代码实现: ```cpp #include <iostream> using namespace std; const int N = 10010; int n; int a[N]; int main() { cin >> n; for (int i = 1; i <= n; i++) cin >> a[i]; int cnt = 0; for (int i = 1, j = n; i <= n && j >= 1; i += 3, j -= 4) { if (a[i] == a[j]) cnt++; } cout << cnt << endl; return 0; } ``` ### 回答2: 首先我们可以通过简单的规律来观察情况: - 从前向后看,喜欢的书本的索引是1, 4, 7, 10... - 从后向前看,喜欢的书本的索引是总数N, N-3, N-7, N-11... 可以发现,经过观察,两个人共同喜欢的书本索引中,前向索引的起点是1,后向索引的起点是N。 我们可以将两者的索引等式列出来: 前向索引的等式:1 + 3i (i为整数) 后向索引的等式:N - 4j (j为整数) 为了到两个等式的交集,我们可以将两个等式相等化: 1 + 3i = N - 4j 由此可得: -1 + 3i + 4j = N 根据题目条件,我们可以知道N是整数,且N大于等于1所以下面尝试出符合条件的ij的组合。 1 + abs(3i) 是4的整数倍。 i = 0, j = 0时,不满足等式,但i = 3,j = 1时,满足等式。 因此,他们共同喜欢的书本是从第1本开始的第7本。 再进一步验证: 对于 i = 3, j = 1,1 + 3 * 3 = 10,N - 4 = 10满足等式。第10本书也是他们共同喜欢的。 所以一共有两本书是他们共同爱好的。 ### 回答3: 设共同爱好的书的数量为x。 对于珂珂而言,第1本是她喜欢的书,从第1本开始,间隔是3的书也是她喜欢的。所以,珂珂喜欢的书的编号为1, 4, 7, 10, ... 对于乐乐而言,最后一本是他喜欢的书,从最后一本开始,间隔是4的书也是他喜欢的。所以,乐乐喜欢的书的编号为最后一本书,倒数第5, 倒数第9, 倒数第13, ... 可以观察到,珂珂喜欢的书的编号始终为奇数,而乐乐喜欢的书的编号始终为偶数。 假设共同爱好的书的编号为a1, a2, a3, ..., ax,则ax为奇数。 珂珂喜欢的书的编号为1 + (1-1) * 3, 1 + (2-1) * 3, 1 + (3-1) * 3, ..., 1 + (x-1) * 3,即为从1开始的等差数列。 乐乐喜欢的书的编号为N - (1-1) * 4, N - (2-1) * 4, N - (3-1) * 4, ..., N - (x-1) * 4,即为从N开始的等差数列。 所以,ax = 1 + (x-1) * 3 = N - (x-1) * 4。 整理得:4x - 3 = N 。 因为ax是奇数,所以4x是奇数,x也是奇数。 假设x = 2y + 1,其中y为非负整数。 则得:4(2y+1) - 3 = N,即8y + 1 = N。 所以,共同爱好的书的数量为1本,编号为8y + 1。 综上所述,他们共同爱好的书的数量为1本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值