1. 赛前须知
1.1 竞赛全流程
赛前准备 → \to → 赛题选择 → \to → 文献和数据 → \to → 数据预处理 → \to → 建模和求解 → \to → 整理检查 → \to → 论文提交
1.2 论文写作排版
模板设置 → \to → 标题与摘要 → \to → 学术用语 → \to → 参考文献与附录 → \to → 公式编辑 → \to → 图与表格 → \to → 换行与分页
1.3 MATLAB 入门
基本界面 → \to → 编程语法 → \to → 常见函数 → \to → 函数和脚本 → \to → 画图 → \to → 文件导入导出 → \to → 仿真建模
1.4 赛题
赛题 | 优化类 | 预测类 | 评价决策类 | NP-hard类 |
特点 | 最优最短最合适 | 短/长期和周期 | 孰优孰劣 | 无法求解最优解 |
模型算法 | 线性/非线性/多目标规划,最短路径,最小生成树,动态规划 | 灰色预测,时间序列,回归分析,支持向量机,神经网络预测,马尔科夫链 | 层次分析,TOPSIS法,灰色关联分析,模糊综合评价,主成分分析,聚类分析 | 蚁群算法,粒子群算法,遗传算法,模拟退火 |
2. 赛前准备
Mathpix: https://www.32r.com/soft/92545.html
3. 参赛人员配置
写论文:照着模板写就行。
一个建模 + 一个码代码 + 一个写论文。
4. 题目类型的选择
华为专项题、大数据题、优化分析题、评价类题。
- 数学能力较强的可以选择优化题目。
- 第一次参赛的同学选择大数据分析。
- 华为专项题专业性较强不建议新手尝试。
- 大数据题目:观察数因子分析据特征,做一些异常值的处理,缺失值的处理,清洗完数据后,再进行建模,利用统计学的方法,回归分析,机器学习算法,神经网络。并不是算法越复杂越好,重点是可以解决问题最好。数据题比较常用的因子分析,主成分分析等。
- 优化分析:学习一些算法,例如遗传算法、蚁群算法,模拟退火算法等。提前下载好优化器学习相应代码,并注册,例如 gurobi、lingo 等。
5. 论文写作
- 摘要一定要写好,占比很重。
- 总页数控制在 30-40 页左右 (大数据题目可能有 60-70 页),最后一定要附上自己的代码。
- 即使做不出来的问题也不要空着,能写什么就写什么,可以从一些参考文献或者一些书籍中摘抄。
- 格式正确,可参考历年的优秀论文。
- 题目和摘要
- 问题重述 (问题背景 + 问题提出)
- 问题分析 (问题一的分析+问题二的分析) 和模型假设
- 符号说明
- 模型的建立与求解
- 模型的优缺点和改进
- 敏感度分析
- 附录
- 参考文献,支撑文件