数学建模 (一)赛前准备

1. 赛前须知

在这里插入图片描述

1.1 竞赛全流程

赛前准备 → \to 赛题选择 → \to 文献和数据 → \to 数据预处理 → \to 建模和求解 → \to 整理检查 → \to 论文提交

1.2 论文写作排版

模板设置 → \to 标题与摘要 → \to 学术用语 → \to 参考文献与附录 → \to 公式编辑 → \to 图与表格 → \to 换行与分页

1.3 MATLAB 入门

基本界面 → \to 编程语法 → \to 常见函数 → \to 函数和脚本 → \to 画图 → \to 文件导入导出 → \to 仿真建模

1.4 赛题

赛题优化类预测类评价决策类NP-hard类
特点最优最短最合适短/长期和周期孰优孰劣无法求解最优解
模型算法线性/非线性/多目标规划,最短路径,最小生成树,动态规划灰色预测,时间序列,回归分析,支持向量机,神经网络预测,马尔科夫链层次分析,TOPSIS法,灰色关联分析,模糊综合评价,主成分分析,聚类分析蚁群算法,粒子群算法,遗传算法,模拟退火

2. 赛前准备

在这里插入图片描述
Mathpix: https://www.32r.com/soft/92545.html

3. 参赛人员配置

写论文:照着模板写就行。
一个建模 + 一个码代码 + 一个写论文。

4. 题目类型的选择

华为专项题、大数据题、优化分析题、评价类题。

  1. 数学能力较强的可以选择优化题目。
  2. 第一次参赛的同学选择大数据分析。
  3. 华为专项题专业性较强不建议新手尝试。
  4. 大数据题目:观察数因子分析据特征,做一些异常值的处理,缺失值的处理,清洗完数据后,再进行建模,利用统计学的方法,回归分析,机器学习算法,神经网络。并不是算法越复杂越好,重点是可以解决问题最好。数据题比较常用的因子分析,主成分分析等。
  5. 优化分析:学习一些算法,例如遗传算法、蚁群算法,模拟退火算法等。提前下载好优化器学习相应代码,并注册,例如 gurobi、lingo 等。

5. 论文写作

  1. 摘要一定要写好,占比很重。
  2. 总页数控制在 30-40 页左右 (大数据题目可能有 60-70 页),最后一定要附上自己的代码。
  3. 即使做不出来的问题也不要空着,能写什么就写什么,可以从一些参考文献或者一些书籍中摘抄。
  4. 格式正确,可参考历年的优秀论文。
  1. 题目和摘要
  2. 问题重述 (问题背景 + 问题提出)
  3. 问题分析 (问题一的分析+问题二的分析) 和模型假设
  4. 符号说明
  5. 模型的建立与求解
  6. 模型的优缺点和改进
  7. 敏感度分析
  8. 附录
  9. 参考文献,支撑文件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值