图像检索
1 传统图像检索
1.1 相似颜色检索
相似颜色检索的过程如下图所示:
1.1.1 颜色特征提取
首先是将一张图像描述成一个特征向量,在颜色直方图里面可以描述成一个256维度的特征向量,也可以使用K-means对图片Lab像素值进行聚类出颜色聚类直方图,从而转换为一个少维的颜色直方图,后者常用。
如果使用的特征向量,维度很大,所以会采用自编码器的机制来进行处理:
那么什么是自编码器呢,自编码器是如何学习的呢?
自编码器:是通过神经网络进行特征提取,提取出针对学习样本的通用特征降维方法。在神经网络的两端通过相同的数据限制,学习到中间的隐藏层权重。通过使用降维再升维的方法,使隐藏层输出最大限度的保存图像的主要特征,以使还原后的图像与原图像误差达到最小。如下图所示,就是将100维降到50维在隐藏层处理后,再在输出层还原回100维,并且尽可能的还原回输入的相同内容:
1.1.2 颜色特征相似度计算
在确定颜色特征相似度计算方法之前,先要对颜色色差距离进行一个说明
什么是色差距离呢?
就是对两个颜色之间的相似度进行一个评价的机制,距离越近就代表这两个颜色相似度越高。评价标准就是以人眼感受为标准,以人眼视觉的均匀性作为衡量标准。
那么常用的色差距离计算方法是哪些?
CIEDE2000是目前常用的评色差计算标准。
算出色差距离有什么用?如何确定两个图片之间的相似度
色差距离就是为相似度的计算提供参考的
如何计算相似度的话,需要介绍一种EMD距离(推土机距离-Wasserstein 距离)的计算方法,这个方法是两个多维特征分布之间的非相似性度量
下面是有关EMD的一个实例:
根据上面的实例不难看出,本质上就是就距离最近的原则进行分配。
那么这一个方法如何体现在图片相似度对比上呢?
假设两个图片的聚类颜色直方图如下
那么我们可以得到这两个图片的EMD是:
EMD值:2.590%+39.73%+17.46%+27.41%=4.795
所以当出现第三个图和第一个图的EMD比4.795大时,我们就可以说在颜色特征上,第二个图和第一个图的相似度更高!!!
接下来来一个完整的颜色特征检索实例:
1.2 相似纹理检索
1.2.1 纹理特征提取
首先我们需要了解什么是纹理?
纹理是一种反映图像中同质现象的视觉特征,它体现了物体表面的具有缓慢变化或者周期性变化的表面结构组织排列属性。纹理具有三大标志:某种局部序列性不断重复、非随机排列、纹理区域内大致为均匀的统一体。纹理不同于灰度、颜色等图像特征,它通过像素及其周围空间邻域的灰度分布来表现,即:局部纹理信息。局部纹理信息不同程度的重复性,即全局纹理信息。
相似的纹理表示的意思就是两个检索部分的元素或基元是按一定相似的规则排列的!!
纹理特征提取方法是什么?
一般是LBP和Gabor滤波器,在图像检索上一般使用Gabor滤波器,原理之前在讲特征提取的时候有介绍过:
(1)首先由于纹理特征提取不太考虑RGB,所以直接转成灰色图便于处理