聿默
创作不易,可以订阅博主哦。
展开
-
【tensorflow】关于tensorflow的losses.contrastive_loss解析
先说下目的吧,看图像检索相关的损失函数时,这个损失函数应该算是绕不开的前人工程。所以这里针对看到的一些文章,也做做自己的相关总结。主要是关于源码的学习啦。文章参考链接:1.https://zhuanlan.zhihu.com/p/72516633(这个更易懂)2.https://zhuanlan.zhihu.com/p/82199561代码参考链接:1.https://github.com/wangz10/contrastive_loss/blob/97b6166e41eef8ea081原创 2021-05-09 10:19:50 · 1273 阅读 · 0 评论 -
【图像检索】research-ms-loss复现
1.环境准备ubuntu16.04cuda10.12.准备预训练模型1)bn_inception-52deb4733.pth2) resnet50-19c8e357.pth3)将其放到~/.cache/torch/checkpoints/目录下4)修改ret_benchmark/config/model_path.py中的目录:from yacs.config import CfgNode as CNMODEL_PATH = { 'bnincept..原创 2021-05-17 15:31:36 · 504 阅读 · 0 评论 -
【图像检索】resnet50由torch转onnx转openvino
0.环境# yolov5的环境 + onnxonnx==1.9.0 # openvino的环境openvino_2021.3.3941.转onnxtorch.onnx.export2.转openvino命令参考:https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/public/resnet-50-pytorch/model.ymlpython3 /opt/intel/openvino/原创 2021-06-30 18:15:10 · 1041 阅读 · 0 评论 -
【行人重识别】《Semi-Supervised Domain GeneralizablePerson Re-Identification》论文阅读笔记
行人重识别部署时,会收到一个未见过的场景的影响。最近有大量的工作都是针对这种跨域自适应的行人重识别研究。但是每当应用于一个场景时,就需要收集相应场景的数据,导致行人重识别的应用有一些阻碍...原创 2022-04-28 15:07:29 · 538 阅读 · 0 评论 -
【行人重识别】centroids-reid论文阅读、复现、以及自己的应用
先说下我为什么要看这篇,最近打开market1501 paper with code,发现这篇文章排名第一,rank1 98.3%。这个分数也太高了吧。看了下,居然没有rerank?惊到我了,没有rerank这么高,最近做这么多知识蒸馏,我是浪费时间了吗?博主也还没有看完这部分。有兴趣可以一起来看看。1.论文阅读(待补充)论文名称:On the Unreasonable Effectiveness of Centroids in Image Retrieval论文地址:https://arxiv原创 2022-02-09 21:28:07 · 2672 阅读 · 2 评论 -
【行人重识别】TransReID复现(market1501为例)
代码参考:https://github.com/heshuting555/TransReID论文参考:https://arxiv.org/abs/2102.043781.环境ubuntu16.04python3.6cuda110torch==1.7.0+cu110torchvision==0.8.0timmyacsopencv-python==4.1.0.252.模型准备https://www.kaggle.com/abhinand05/vit-base-models原创 2021-03-31 13:02:53 · 3145 阅读 · 29 评论 -
fast-reid复现Hyper-Parameter Optimization
0环境ubuntu16.04cuda9.0python3.6torch==1.1.0torchvision==0.3.0Cythonyacstensorboardfuturetermcolorsklearntqdmopencv-python==4.1.0.25matplotlibscikit-imagefaiss-gpu==1.6.3tabulategdown'ray[tune]'hpbandsterConfigSpacehyperoptraydatacl原创 2020-10-27 16:44:15 · 395 阅读 · 0 评论 -
【行人重识别】fast-reid复现(20210119-v1.0.0)
参考代码:https://github.com/JDAI-CV/fast-reid/tree/v1.0.00.环境ubuntu16.04cuda9.0python3.6torch==1.1.0torchvision==0.3.0Cythonyacstensorboardfuturetermcolorsklearntqdmopencv-python==4.1.0.25matplotlibscikit-imagenumpy==1.16.41.准备数据参考.原创 2021-01-19 12:15:25 · 1231 阅读 · 16 评论 -
【行人重识别】fast-reid复现(20210111)
参考代码:https://github.com/JDAI-CV/fast-reid0.环境ubuntu16.04cuda9.0python3.6torch==1.1.0torchvision==0.3.0Cythonyacstensorboardfuturetermcolorsklearntqdmopencv-python==4.1.0.25matplotlibscikit-imagenumpy==1.16.4安装apex(不要直接通过pip安装):gi原创 2021-01-12 13:54:18 · 2752 阅读 · 8 评论 -
【行人重识别】fast-reid旧版代码添加finetuning功能
参考:https://github.com/JDAI-CV/fast-reid/issues/325https://github.com/JDAI-CV/fast-reid/commit/7e9a4775da68625895c04e5cae663f1b2f85d8110.环境ubuntu16.04cuda9.0python3.6torch==1.1.0torchvision==0.3.0Cythonyacstensorboardfuturetermcolorskle原创 2020-11-27 11:55:18 · 741 阅读 · 1 评论 -
(fast-reid)torch error:DataLoader worker (pid(s) 26462) exited unexpectedly
1.问题之前的时候已经配置好了fast-reid的环境,隔了以后再次运行这个,发现出现缓存不足的问题:File "/usr/local/lib/python3.6/dist-packages/torch/multiprocessing/reductions.py", line 315, in reduce_storage fd, size = storage._share_fd_()RuntimeError: unable to write to file </torch_2745原创 2020-07-11 17:21:20 · 1418 阅读 · 0 评论 -
(fast-reid)visualize_result.py中的distmat = 1 - torch.mm(q_feat, g_feat.t())理解
0.疑问# compute cosine distancedistmat = 1 - torch.mm(q_feat, g_feat.t())distmat = distmat.numpy()为什么此处是计算余弦距离?1.相关与理解(1)余弦距离计算(https://www.cnblogs.com/chaosimple/p/3160839.html):(2)torch.mm() torch.mm()含义到底是什么(https://blog.csdn.net/Real_...原创 2020-07-15 14:41:16 · 721 阅读 · 0 评论 -
京东fast-reid运行visualize_result.py出现error:IndexError: invalid index to scalar variable
1.问题IndexError: invalid index to scalar variable2.解决修改/fast-reid-master/fastreid/evaluation/rank.pyline182:def evaluate_rank( distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50, use_原创 2020-07-15 11:47:02 · 1215 阅读 · 0 评论 -
关于行人重识别评估指标CMC理解总结
1.参考文献1.【Person Re-ID】常用评测指标2.How_is_CMC_produced_recognition_rate_vs_Rank_for_unknown_faces3.人脸识别中的rank-n 代表的意思4.余弦距离、欧氏距离和杰卡德相似性度量的对比分析 一定要先看第一篇(写得更加清晰),第二篇举了更多例子(可以加深理解)。...原创 2020-07-16 19:39:27 · 2192 阅读 · 0 评论 -
(fast-reid)计算特征一对多的余弦相似度距离
1.解释1*feature_query.shape[0]矩阵与feature_query.shape[0]*m矩阵做矩阵的乘法,得到1*m的矩阵就是计算的feature_query与feature_gallery的m个特征计算的cosine距离。为什么呢,因为feature_query与feature_gallery已经做了归一化了。可以在工程中查询norm就能找到了。上图来自(余弦距离、欧氏距离和杰卡德相似性度量的对比分析)import torch distmat = torc...原创 2020-07-17 10:20:17 · 1635 阅读 · 0 评论 -
fast-reid复现(Market1501)
https://github.com/JDAI-CV/fast-reid0.环境ubuntu16.04torch==1.2.0torchvision==0.4.0Cythonyacstensorboard原创 2020-07-23 09:30:54 · 6450 阅读 · 35 评论 -
fast-reid复现知识蒸馏部分(Market1501)--- 2020.08.31版本
由于想继续使用pytorch1.1.0,所以可能会涉及到一些pytorch相关的修改,会注明。0.环境ubuntu16.04cuda9.0python3.6torch==1.1.0torchvision==0.3.0Cythonyacstensorboardfuturetermcolorsklearntqdmopencv-python==4.1.0.25matplotlibscikit-imagegdown1.下载对应版本的fast-reidhttps://原创 2020-09-02 10:28:28 · 1125 阅读 · 10 评论 -
【行人重识别】复现deep-person-reid中特征可视化
0.环境ubuntu16.04python3.6cuda9.0torch==1.1.0torchvision==0.3.0numpyCythonh5pyPillowsixscipyopencv-pythonmatplotlibtb-nightlyfutureyacsgdownflake8yapfisort==4.3.21imageio下载:git clone https://github.com/KaiyangZhou/deep-person-reid原创 2020-09-17 19:53:52 · 3413 阅读 · 0 评论 -
(CVPR2018)Camstyle复现
Camstyle,是一个与reid解耦的数据增广方法,主要用于缓解相机偏差。其实这个代码有较为详细的过程,记下只为后面更容易上手。https://github.com/zhunzhong07/CamStyle0.环境ubuntu16.04cuda9.0python3.6torch=1.1.0torchvision==0.3.0visdomDominate1.准备数据将market1501数据复制到CycleGAN-for-CamStyle/datasets目录下,并改名为m原创 2020-09-22 20:42:57 · 738 阅读 · 1 评论 -
(fast-reid)多GPU训练出现RuntimeError: Address already in use解决
https://github.com/JDAI-CV/fast-reid0.环境ubuntu16.04cuda9.0python3.6torch==1.1.0torchvision==0.3.0Cythonyacstensorboardfuturetermcolorsklearntqdmopencv-python==4.1.0.25matplotlibscikit-imagefaiss-gpu==1.6.3tabulategdown1.多次使用多GPU出现错.原创 2020-10-10 11:03:21 · 5311 阅读 · 1 评论 -
fast-reid(HAA)之loss = getattr(Loss, cfg.MODEL.LOSSES.NAME[0])(cfg)(..., ..., ...)解析
参考:fast-reid(HAA)from fastreid.modeling import losses as Lossloss = getattr(Loss, cfg.MODEL.LOSSES.NAME[0])(cfg)(pred_class_logits, global_features, gt_classes)1.getattr内部参数Python getattr() 函数:getattr() 函数用于返回一个对象属性值。解析Loss与对应的cfg文件中:from fas.原创 2020-11-10 20:19:13 · 444 阅读 · 0 评论