1.分类
分类问题很多,比如说是否为垃圾邮件,在线交易是否欺诈等(二分类问题)。
使用线性回归模型h(θ),会得到连续的预测值,但是我们需要的输出是0和1。所以这里要确定一个阈值。
h(θ)>0.5,预测y=1; h(θ)<0.5,预测y=0。这种情况下,我们可以很好的完成分类的任务。但是,增加一个特征点到训练集中,会使得回归直线偏移,原本的阈值0.5不再合适,预测值产生偏差(原本预测的恶性肿瘤会变成良性肿瘤)。
而且线性回归的预测值超过[0,1]的这个区间,并不适合这种类型的问题。所以我们引入逻辑回归预测, 使得0<h(θ)<1。
2.假设表示
引入函数g,令逻辑函数的假设表示为:
函数g称为Sigmoid function或者Logistic function。具体表达式为:。图像如下图所示:
综合上面两个式子,可以得出逻辑回归模型的数学表达式:
与线性回归不同,hθ(x)的值不是y的预测值,而是概率值。在参数θ下,对于给定的输入变量x,y为1的概率[ P(y=1 l x;θ)]。因此 hθ(x)的区间在0和1之间。
举个例子,对于给定的x,计算出hθ(x)为0.6,表示有60%的几率,y为正向类,有40%的几率是负向类。
3.决策边界
在之前的逻辑回归中, h(θ)>0.5时,y=1;相反, h(θ)<0.5时,y=0。
根据函数g的图像可知,z<0时,g(z)<0.5;z>0时,g(z)>0.5。
因为z=θTx,所以θT>0时,y=1;θT<0时,y=0。
我们可以认为θTx=0是一个决策边界,当它大于0或者小于0时,逻辑回归模型分别预测不同的分类结果。
现在假设有个模型,