机器学习笔记(六) 逻辑回归

本文深入探讨了逻辑回归在分类问题中的应用,介绍了如何通过Sigmoid函数将线性回归转换为适合0-1分类的模型。讨论了决策边界的形成,以及在非线性情况下的决策边界变化。同时,文章详细阐述了逻辑回归的代价函数、梯度下降优化过程以及多类分类问题的解决方案。
摘要由CSDN通过智能技术生成

1.分类

   分类问题很多,比如说是否为垃圾邮件,在线交易是否欺诈等(二分类问题)。

   使用线性回归模型h(θ),会得到连续的预测值,但是我们需要的输出是0和1。所以这里要确定一个阈值。

   h(θ)>0.5,预测y=1; h(θ)<0.5,预测y=0。这种情况下,我们可以很好的完成分类的任务。但是,增加一个特征点到训练集中,会使得回归直线偏移,原本的阈值0.5不再合适,预测值产生偏差(原本预测的恶性肿瘤会变成良性肿瘤)。

   而且线性回归的预测值超过[0,1]的这个区间,并不适合这种类型的问题。所以我们引入逻辑回归预测, 使得0<h(θ)<1。


2.假设表示

   引入函数g,令逻辑函数的假设表示为:

   函数g称为Sigmoid function或者Logistic function。具体表达式为:。图像如下图所示:

   综合上面两个式子,可以得出逻辑回归模型的数学表达式:

   与线性回归不同,hθ(x)的值不是y的预测值,而是概率值。在参数θ下,对于给定的输入变量x,y为1的概率[ P(y=1 l x;θ)]。因此 hθ(x)的区间在0和1之间。

    举个例子,对于给定的x,计算出hθ(x)为0.6,表示有60%的几率,y为正向类,有40%的几率是负向类。


3.决策边界

   在之前的逻辑回归中, h(θ)>0.5时,y=1;相反, h(θ)<0.5时,y=0。

   根据函数g的图像可知,z<0时,g(z)<0.5;z>0时,g(z)>0.5。

   因为z=θTx,所以θT>0时,y=1;θT<0时,y=0。

   我们可以认为θTx=0是一个决策边界,当它大于0或者小于0时,逻辑回归模型分别预测不同的分类结果。

   现在假设有个模型,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值