机器学习篇(三)

无论是风里,还是在雨里,我都在这里守候着你~

k-近邻算法(KNN)

注:本篇文章没有具体的实例,后面会有的。

简单描述:在预测目标值的时候选择和自己相似的目标值。比如,有五个人分在在武汉的五个区域,小明不知道自己在什么区域,他计算自己和其他4个人的距离,谁离自己最近,他在什么区,小明就在什么区。

k-近邻算法计算公式:欧式距离公式

计算步骤:

1、算距离:给定测试对象,计算它与训练集中的每个对象的距离

2、找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻

3、做分类:根据这k个近邻归属的主要类别,来对测试对象分类

为防止某个值对结果的影响较大需要将数据进行标准化处理。

KNN模块介绍:

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')

n_neighbors:选择相似的5组数据,按照比例分类。

algorithm:指定找出相似的数据的算法,比如有ball_tree和kd_tree,而auto则是根据传递的数据选择合适的算法。

当数据集较大的时候需要处理:

1、缩小数据集范围

2、如果有日期类型需要处理日期

3、删除不需要的特征

4、数据处理完需要标准化处理

5、使用算法进行预测

常见问题:

k值取多少?也就是参数n_neighbors的大小

k值取的小:容易受到异常值的影响。

k值取的大:容易送到k值数据类别多而波动。

性能:

懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢

可解释性较差。

优点:

简单,易于理解,易于实现,无需估计参数,无需训练

一般使用场景:小数据样本,几千-几万的数据。

朴素贝叶斯算法

k-近邻算法是和那个相似就是那个类别,而朴素贝叶斯算法会计算出属于某个类别的概率。

使用朴素贝叶斯算法的前提条件:特征独立。在计算概率的时候要求两个事件是独立的,这里也一样。

计算公式:

模块介绍:

sklearn.naive_bayes.MultinomialNB(alpha=1.0)

alpha:拉普拉斯平滑系数

拉普拉斯平滑系数是为了防止计算出概率为0的情况。

步骤:

1、对数据进行前期处理(切割等)

2、生成特征词:TfidfVectorizer(比如科技类文章,云计算出现的次数)

3、利用朴素贝叶斯算法进行计算

优点:

1、稳定的分类效率

2、对缺失护具不敏感,常用文本分类

3、分类准确率高,速度快

缺点:

特征之间需要独立,不能相互影响。

精确率和召回率

在上述文章中我们判断预测是否准确用准确率。也就是预测的正确结果占全部的百分比。

召回率:简单来说就是预算正确的占用实际正确的百分比,在有些领域是需要看召回率的。比如:

50个人中有有20个人是癌症,用算法识别出来有18个人是癌症,但是有3个人识别错了,这个召回率就是

15/20。在有些领域需要提高召回率,宁可识别出30个人是癌症,实际得癌症的人全在里面。

精确率:计算计算对的值占得百分比。一般不使用。

评估模型模块:

sklearn.metrics.classification_report(y_true,y_pred,target_names=None)

y_true:真实目标值

y_pred:预测目标值

target_names:目标类别名称

返回类别的精确率(precision)和召回率(recall)。

KNN算法调优

交叉验证

以前是将数据分为训练集和测试集,交叉验证:

1、把训练集分为n等分。n是自己设定。把其中第一份拿出来当做验证集。来计算得出一个准确率。

2、把第2份当做验证集,其他当做训练集得出一个准确率。

3、同上。第三份,第四份等等。

4、求出平均准确率

k-近邻算法中的n_neighbors参数该给多少?

超参数搜索(网格搜索):

n_neighbors这种需要手动指定的叫做超参数,所以需要设定比如1,3,5等

都采用交叉验证来进行评估,最后选出最优参数来建立模型。

超参数搜索(网格搜索)使用:

sklearn.model_selection.GridSearchCV(estimator,param_grid=None,cv=None)

estimator:估计器对象,也就是算法。

param_grid:参数(字段形式),{'n_neighbors':[1,3,5]}

cv:指定多少次交叉验证,一般使用10.

分析结果:

best_score_:最好的结果

best_estimator_:最好的参数模型

cv_results_:每次交叉验证后的准确率

长按识别二维码

了解,学习python

已标记关键词 清除标记
<p> <strong><span style="font-size:16px;color:#337FE5;"><b><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"></a><a target="_blank" href="https://edu.csdn.net/bundled/detail/308"><span> </span></a></b></span></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <strong><b><strong><a class="ql-link ql-size-12 ql-author-39788408" href="https://edu.csdn.net/bundled/detail/298" target="_blank">[本课程属于AI完整学习路线套餐,该套餐已“硬核”上线,点击立即学习!]</a></strong> </b></strong> </p> <p class="ql-long-39788408" style="font-size:11pt;color:#494949;"> <br /> </p> <p> <strong><span style="font-size:16px;color:#337FE5;"><img src="https://img-bss.csdnimg.cn/202011090216454206.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#337FE5;"><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#337FE5;">【为什么要学习深度学习和计算机视觉?】</span></strong> </p> <p> <span style="font-family:"background-color:#FFFFFF;">AI人工智能现在已经成为人类发展中最火热的领域。而计算机视觉(CV)是AI中最热门,也是落地最多的一个应用方向<span style="font-family:"background-color:#FFFFFF;">(人脸识别,自动驾驶,智能安防,车牌识别,证件识别)</span>。</span><span style="font-family:"background-color:#FFFFFF;">所以基于人工智能的计算视觉行业必然会诞生大量的工作和创业的机会。如何能快速的进入CV领域,同时兼备理论基础和实战能力,就成了大多数学习者关心的事情,而这门课就是因为这个初衷而设计的。<br /> </span> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-size:16px;color:#337FE5;"><strong>【讲师介绍】</strong></span> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-size:16px;color:#337FE5;"><strong>CH<strong><span style="font-family:"color:#222226;font-size:16px;background-color:#FFFFFF;font-weight:700;">ARLIE 老师</span></strong></strong></span> </p> 1、人工智能算法科学家<br /> 2、深圳市海外高层次人才认定(孔雀人才)<br /> 3、美国圣地亚哥国家超算中心博士后<br /> 4、加利福尼亚大学圣地亚哥全奖博士<br /> 5、参与美国自然科学基金(NSF)及加州能源局 (CEC)资助的392MW IVANPAH等智慧电网项目<br /> 6、21篇国际期刊文章(sci收录17篇),总引用接近1000<br /> 7、第一作者发明专利11份<br /> <p> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span style="font-family:"color:#337FE5;"><span><span style="font-size:16px;"><strong>【推荐你学习这门课的理由:</strong></span><span style="color:#E53333;font-size:16px;"><strong>知识体系完整+丰富学习资料】</strong></span></span></span> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span class="ql-author-24357476" style="font-family:""></span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> 1、本课程总计9大章节,是一门系统入门计算机视觉的课程,未来将持续更新。 </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>2</span>、<span>课程从计算机视觉理论知识出发,理论结合实战,手把手的实战代码实现(霍夫变换与模板匹配,</span><span>AlexNet OCR</span><span>应用</span><span>,VGG</span><span>迁移学习,多标签分类算法工程)</span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>3</span>、<span>带你了解最前沿技术,</span><span>各类型算法的优点和缺点,掌握数据增强,</span><span>Batchnormalization, Dropout</span><span>,迁移学习等优化技巧,搭建实用的深度学习应用模型</span> </p> <p class="MsoNormal" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <span>4</span>、学习完后,你将具有深度学习与计算视觉的项目能力,比如大学生学完可以具备独立完成机器视觉类毕业设计的能力,在求职过程中可以体系化的讲解机器视觉核心知识点,初步达到人工智能领域机器视觉工程师的水平 </p> <span style="color:#222226;font-family:PingFangSC-Regular, "font-size:14px;background-color:#FFFFFF;"></span> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <br /> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <strong><span style="color:#337FE5;font-size:16px;">【学完后我将达到什么水平?】</span></strong> </p> <p class="ql-long-24357476"> <span>1、<span style="font-family:"">零基础入门计算视觉,学习掌握并应用从经典图像处理到深度学习分类任务的要点知识</span></span> </p> <p class="ql-long-24357476"> <span>2、<span style="font-family:"">掌握数据增强,迁移学习等优化技巧,搭建实用的深度学习应用模型</span></span> </p> <p class="ql-long-24357476"> <span>3、<span style="font-family:"">学习完课程,可以独立应用多个经典算法和深度学习算法</span></span> </p> <p class="ql-long-24357476"> <span>4、<span style="font-family:"">以</span><span style="font-family:"">大学毕业设计,面试找工作为目标,</span><span style="font-family:"">手把手带大家编程,即使没有太多计算视觉的背景知识也可以循序渐进完成课程,获得实战项目的经验</span></span> </p> <p class="ql-long-24357476"> <br /> </p> <p class="ql-long-24357476"> <span style="color:#337FE5;"><b><span style="background-color:#FFFFFF;color:#337FE5;"><span style="font-size:16px;color:#337FE5;">【面向人群】</span></span></b></span> </p> <p class="ql-long-24357476"> <span>1、对AI感兴趣,想要系统学习计算机视觉的学员</span> </p> <p class="ql-long-24357476"> <span>2、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">需要毕业设计的大学生</span></span> </p> <p class="ql-long-24357476"> <span>3、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">做图像分析或相关数据分析的研究生</span></span> </p> <p class="ql-long-24357476"> <span>4、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">准备面试计算视觉和深度学习岗位的应聘者</span></span> </p> <p class="ql-long-24357476"> <span>5、<span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">希望在项目中引入计算视觉</span><span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">/</span><span style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;">深度学习技术的开发人员</span></span> </p> <p class="ql-long-24357476"> <br /> </p> <p class="ql-long-24357476"> <b><span style="font-family:"font-size:16px;background-color:#FFFFFF;color:#337FE5;"><span style="font-size:16px;color:#337FE5;">【课程知识体系图</span><span style="font-size:16px;color:#337FE5;">】</span></span></b> </p> <p class="ql-long-24357476"> <span><b><img src="https://img-bss.csdnimg.cn/202007140746422581.png" alt="" /></b></span> </p> <p class="ql-long-24357476"> <span><b><br /> </b></span> </p> <p class="ql-long-24357476"> <span style="font-size:16px;color:#337FE5;"><b>【实战项目】</b></span> </p> <p class="ql-long-24357476"> <b><img src="https://img-bss.csdnimg.cn/202007150352244062.png" alt="" /><img src="https://img-bss.csdnimg.cn/202007150517376530.png" alt="" /></b> </p> <p class="ql-long-24357476"> <br /> </p>
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页