机器学习实例篇

无论是风里,还是在雨里,我都在这里守候着你~

前言:

阅读本篇文章需要阅读:

数据分析篇(一),数据分析篇(二)

数据分析篇(三)数据分析(四)

数据分析篇(五)数据分析篇(六)

机器学习篇(一)机器学习篇(二)机器学习篇(三)

k-近邻算法实例

数据来源:https://www.kaggle.com/c/facebook-v-predicting-check-ins

# 注册该网站需要科学上网,下载数据也比较慢

# 后台回复数据获取数据,科学上网插件也给大家,免费试用3天。

题目是这样的:

本次比赛的目的是预测一个人想要登记的地方。为了本次比赛的目的,

Facebook创建了一个人工世界,其中包括10多公里10平方公里的100,000多个地方。

对于给定的坐标集,您的任务是返回最可能位置的排序列表。数据被制作成类似于来自移动

设备的位置信号,让您了解如何处理由不准确和嘈杂的值导致的实际数据。

不一致和错误的位置数据可能会破坏Facebook Check In等服务的体验。

数据说明:

train.csv,test.csv 

row_id:签到事件的id

xy:坐标

准确度:定位精度 

时间:时间戳

place_id:业务的ID,这是您预测的目标

# 我只用了train.csv,由于数据量太大。你可以两个都用上。

实例:

# 导入模块api

import pandas as pd

# 标准化处理模块

from sklearn.preprocessing import StandardScaler

# 分割数据集

from sklearn.model_selection import train_test_split

# k-近邻算法

from sklearn.neighbors import KNeighborsClassifier

# k-近邻预测用户签到位置

def knncls():

    # 读取数据

    data = pd.read_csv("D:/shuju/train.csv")

    #print(data.head(5))

    '''

        ID     x坐标   y坐标  坐标准确性 时间戳  预测目标

       row_id   x       y     accuracy   time    place_id

    0    0    0.7941  9.0809     54     470702  8523065625

    1    1    5.9567  4.7968     13     186555  1757726713

    2    2    8.3078  7.0407     74     322648  1137537235

    3    3    7.3665  2.5165     65     704587  6567393236

    4    4    4.0961  1.1307     31     472130  7440663949

    '''

    # 由于数据过大,很慢,这里我选择缩小数据(你可以不进行缩小,效果更好)

    # 只取x在1.0-1.25之间的和y在2.5-2.75之间的,你可以随意修改,也可以读取全部

    data = data.query('x > 1.0& x < 1.25 & y > 2.5 &y<2.75')

    # 处理时间戳,unit = 's'表示按照秒转换。

    time_value = pd.to_datetime(data['time'],unit = 's')

    #print(time_value) # 17467条数据

    '''

    863        1970-01-03 20:13:11

    1693       1970-01-04 06:16:23

    9877       1970-01-06 19:49:58

    ...

    Name: time, Length: 17467, dtype: datetime64[ns]

    '''

    # 把日期转换成字典 转换成字典可以获取年月日等

    time_value = pd.DatetimeIndex(time_value)

    # 构造时间特征加入到data中,选择自己需要的特征(年月都是一样的,只获取日,小时,工作日)

    # 如果直接写成data['day'] = time_value.day 会有警告信息

    data = data.copy()

    data.loc[:,'day'] = time_value.day

    data.loc[:,'hour'] = time_value.hour

    data.loc[:,'weekday'] = time_value.weekday

    # 删除时间戳,按照列删除,在pd中是1,在sklearn中是1

    data = data.drop(['time'],axis=1)

    # print(data)

    '''

                row_id       x       y  accuracy   place_id  day  hour  weekday

    863            863  1.3828  2.6444        64  5784939944    3    20        5

    1693          1693  1.2583  2.6839        72  3952821602    4     6        6

    '''

    # 删除目标值重复少于4个的数据,目标值太多

    # 分组求个数

    place_count = data.groupby('place_id').count()

    # 分组后place_count.row_id为次数

    # 按照place_id分组会将目标值当成索引,reset_index将索引变为0,1..加入到特征列

    tf = place_count[place_count>4].reset_index()

    # 过滤掉少于4个签到的目标值

    data = data[data['place_id'].isin(tf.place_id)]

    # 取出特征值和目标值(删除目标值)

    y = data['place_id']

    x = data.drop(['place_id'],axis = 1)

    # 删除row_id特征

    data = data.drop(['row_id'],axis=1)

    # 数据分割成训练集和测试集

    # x_train:训练集特征值

    # x_test:测试集特征值

    # y_train:训练集目标值

    # y_test:测试集目标值

    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.25)

    # 如果不做标准化处理使用k-近邻算法

    # knn = KNeighborsClassifier(n_neighbors=5)

    # 传入训练集的特征值和目标值

    # knn.fit(x_train,y_train)

    # 得出预算结果,通过测试集的特征值来预测

    # y_predict = knn.predict(x_test)

    # 查看准确率,输入测试集的特征值和目标值

    # print('预测准确率为:',knn.score(x_test,y_test))

    '''

    预测准确率为: 0.011907487978016945

    也就是1.1% 100个数据有1个对的

    原因:1、数据没有全用上,我这里只抽取了部分数据

         2、未做标准化处理

         3、没有删除其他影响的特征,比如row_id

    在上面删除下row_id来再试一下

    得出:预测准确率为: 0.013510419051980764

    增加了一点,但是效果不明显,继续做标准化处理

    '''

    # 使用标准化处理和交叉验证网格搜索

    std = StandardScaler()

    # 这里无论是训练集还是测试集的特征值都需要做标准化处理

    x_train = std.fit_transform(x_train)

    # 这里不需要再调用fit,因为fit只是计算一些值,计算一遍之后就不需要了

    x_test = std.transform(x_test)

    knn = KNeighborsClassifier()

    # 网格搜索

    # 构造参数n_neighbors值进行搜索

    param = {'n_neighbors':[2,5,10]}

    gc = GridSearchCV(knn,param_grid = param,cv = 10)

    # 传入训练集的特征值和目标值

    gc.fit(x_train,y_train)

    # 得出预算结果,通过测试集的特征值来预测

    y_predict = gc.predict(x_test)

    # 查看准确率,输入测试集的特征值和目标值

    print('预测准确率为:',gc.score(x_test,y_test))

    print('最好的结果:',gc.best_score_)

    print('选择的模型为也就是n_neighbors值:',gc.best_estimator_)

    '''

    预测准确率为: 0.4069557362240289

    最好的结果: 0.40099382623098934

    选择的模型为也就是n_neighbors值: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

               metric_params=None, n_jobs=None, n_neighbors=10, p=2,

               weights='uniform')

    这个相比未做标准化差别就很大了,但是准确率依然还是不够可以试试读取所有数据。

    '''

if __name__ == "__main__":

    knncls()

#注释很详细,这里不做说明。

朴素贝叶斯算法实例

数据来源:Sklearn自带数据集

20newsgroups数据集是用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。

数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。

实例:

import pandas as pd
from sklearn.datasets import fetch_20newsgroups
# 分词
from sklearn.feature_extraction.text import TfidfVectorizer
#朴素贝叶斯算法
from sklearn.naive_bayes import MultinomialNB
def naviebayes():
    '''
    朴树贝叶斯算法实例
    '''
    # 读取数据
    news = fetch_20newsgroups(subset='all')
    # 数据分割
    x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
    # 分词用TfidfVectorizer
    tf = TfidfVectorizer()
    # 用训练集分词统计词的重要性
    x_train = tf.fit_transform(x_train)
    x_test = tf.transform(x_test)
    # 使用朴素贝叶斯算法预算
    mlt = MultinomialNB(alpha=1.0)
    mlt.fit(x_train,y_train)
    y_predict = mlt.predict(x_test)
    print('预算准确率为:',mlt.score(x_test,y_test))
    '''
    预算准确率为: 0.8433786078098472
    '''
if __name__ == "__main__":
    naviebayes()

其他

菜单右下角 诚意相册点一点。感谢!!

长按识别二维码

了解,学习python

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页