自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(41)
  • 收藏
  • 关注

原创 夏令营,预推免经验分享(计科方向,天大+北理+上交+国防科大+北邮+清华深圳)

保研经验分享个人材料推免学校:北京邮电大学推免专业: 计算机科学与技术个人情况:某985分校2%(4/198),四级649六级530,有实验室经历和项目没有论文,有两个国奖和一个省三好,以及美赛,计算机博弈,蓝桥杯,省程序设计竞赛等一些奖。二. 保研经验分享:首先总结一下自己参加过的夏令营和预推免夏令营:天大计算机,北京理工计算机,北交大计算机,上海交大网安,南...

2019-10-15 15:03:44 2468 1

原创 极大似然估计

① 频率学派他们认为世界是确定的。他们直接为事件本身建模,也就是说事件在多次重复实验中趋于一个稳定的值p,那么这个值就是该事件的概率。他们认为模型参数是个定值,希望通过类似解方程组的方式从数据中求得该未知数。这就是频率学派使用的参数估计方法-极大似然估计(MLE),这种方法往往在大数据量的情况下可以很好的还原模型的真实情况。② 贝叶斯派他们认为世界是不确定的,因获取的信息不同而异。假设对世界先有一个预先的估计,然后通过获取的信息来不断调整之前的预估计。 他们不试图对事件本身进行建模,而是从旁观者的角

2020-11-19 11:42:25 14

原创 【LeetCode31】

【LeetCode31】class Solution {public: void nextPermutation(vector<int>& nums) { int i=nums.size()-1; int tmp; int flag=0; if(nums.size()==0||nums.size()==1) { return; } whil

2020-11-11 11:41:51 8

转载 迁移强化学习

作者:机器之心链接:https://zhuanlan.zhihu.com/p/87220648来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。一、迁移学习是什么?机器学习技术在许多领域取得了重大成功,但是,许多机器学习方法只有在训练数据和测试数据在相同的特征空间中或具有相同分布的假设下才能很好地发挥作用。当分布发生变化时,大多数统计模型需要使用新收集的训练数据重建模型。在许多实际应用中,重新收集所需的训练数据并重建模型的代价是非常昂贵的,在这种情况下,我们需要在任务域

2020-11-07 22:06:57 22

原创 【LeetCode 1358】

【LeetCode 1358】[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4osxhEOe-1604755774208)(C:\Users\liuyi\AppData\Roaming\Typora\typora-user-images\image-20201107210151741.png)]版本1:int abc_or_not(string s,int l,int r){ int flag1=0,flag2=0,flag3=0; for(int i

2020-11-07 21:29:47 12

原创 常用的强化学习框架

常用的强化学习框架OpenAI Gym (GitHub) (docs)rllab (GitHub) (readthedocs)Ray (Doc)Dopamine: https://github.com/google/dopamine (uses some tensorflow)trfl: https://github.com/deepmind/trfl (uses tensorflow)ChainerRL (GitHub) (API: Python)Surreal GitHub (API:

2020-11-02 21:45:30 126

原创 java和C++中的重载和多态

重载重载,从简单说,就是函数或者方法有相同的名称,但是参数列表不相同的情形,这样的同名不同参数的函数或者方法之间,互相称之为重载函数或者方法。在java中同一个类中的2个或2个以上的方法可以有同一个名字,只要它们的参数声明不同即可。1.C++中运算符的重载<返回类型说明符> operator <运算符符号>(<参数表>){ <函数体>}2.一般的重载 public class OverloadDemo { void tes

2020-10-21 10:46:20 18

转载 python继承

1.继承,调用父类属性方法在python里面,继承一个类只需要这样写:class Animal: def heshui(self): print('动物正在喝水')class Cat(Animal): pass这样Cat就有了Animal的所有属性和方法,调用的时候直接调用就可以了:#接上面代码cat = Cat()cat.heshui()>>>动物正在喝水这个时候,如果子类想重写父类的方法,可以直接重写:class Ani

2020-10-20 20:18:19 51

原创 基于策略搜索的强化学习方法(PG,TRPO,PPO,DPPO,AC,A3C,DDPG,TD3)

基于策略搜索的强化学习方法1.policy gridient1.1 基础推导1.2 TipTip1: add a baseline(增加基线)因为原来的梯度,一直都会取正数,不是特别合适,但是这样其实无可厚非,因为可以用过大小进行区分,但我们这里更好的办法是给他加入一个基线,让其有正有负。Tip2:Assign Suitable Credit因为如果对于每个执行的动作,都使用同样的全局reward,则会有损公平性,因为在同一个episode中,并不是所有的动作都是同样好的,所以我们这里使用

2020-10-02 17:27:41 318

转载 RL稀疏奖励问题

强化学习中状态空间大,在只有达到特定的状态才能给出奖励的设定下,agent很难探索到特定状态,怎么办?稀疏奖励问题是指agent探索的过程中难以获得正奖励,导致学习缓慢甚至无法进行学习的问题,并且广泛存在于现实中,比如围棋,人们很难去设定中间每步的奖励,并且状态空间巨大,使用全局奖励会有奖励稀疏且滞后的问题。对于稀疏奖励问题的资料首先推荐李宏毅老师关于稀疏奖励部分的讲解和国内这篇稀疏奖励综述。深度强化学习中稀疏奖励问题研究综述 - 中国知网kns.cnki.net我觉得目前的稀疏奖励算法可以从数据和

2020-09-22 10:13:23 91

原创 STL库总结

vector#include <bits/stdc++.h>using namespace std;int main(){ vector<int> vec1; vec1.push_back(1); vec1.push_back(2); vec1.push_back(4); vec1.push_back(56); //通过复制构造一个vector //结果:vec2:1,2 vector<int> vec2(vec1); //返回向

2020-09-19 11:02:24 27

原创 用一台电脑的python程序调用另一台电脑的python程序

用一台电脑的python程序调用另一台电脑的python程序1.简介ssh是一个协议,OpenSSH是其中一个开源实现,paramiko是Python的一个库,实现了SSHv2协议(底层使用cryptography)。2.核心组件paramiko包含两个核心组件:SSHClient和SFTPClient。SSHClient的作用类似于Linux的ssh命令,是对SSH会话的封装,该类封装了传输(Transport),通道(Channel)及SFTPClient建立的方法(open_sftp),通

2020-09-16 11:04:54 163

原创 2019-11-19 tensorflow安装方法 120956

tensorflow安装方法tensorflow分为CPU和GPU两个版本,各有优缺点CPU版本:优点是便于安装,适合初学者;缺点是不支持gpu运算。应用场景一般用于简单的深度学习实验GPU版本:优点是功能强大,包含有CPU版本;缺点是安装复杂,需要CUDA和CUDnn的支持,且需要版本对应。为了方便我们首先切换到root用户su root #切换到root用户前提:安装pytho...

2020-07-18 10:47:52 1764

原创 各种AC系列算法的伪代码

TD3的技巧技巧一:裁剪的双Q学习(Clipped Double-Q learning). 与DDPG学习一个Q函数不同的是,TD3学习两个Q函数(因此称为twin),并且利用这两个Q函数中较小的哪个Q值来构建贝尔曼误差函数中的目标网络。技巧二:延迟的策略更新(“Delayed” Policy Updates). TD3算法中,策略(包括目标策略网络)更新的频率要低于Q函数的更新频率。文章建议Q网络每更新两次,策略网络才更新一次。技巧三:目标策略平滑(Target Policy Smoothing).

2020-07-03 10:08:07 181

原创 TD3和DDPG的伪代码

TD3的技巧技巧一:裁剪的双Q学习(Clipped Double-Q learning). 与DDPG学习一个Q函数不同的是,TD3学习两个Q函数(因此称为twin),并且利用这两个Q函数中较小的哪个Q值来构建贝尔曼误差函数中的目标网络。技巧二:延迟的策略更新(“Delayed” Policy Updates). TD3算法中,策略(包括目标策略网络)更新的频率要低于Q函数的更新频率。文章建议Q网络每更新两次,策略网络才更新一次。络才更新一次。技巧三:目标策略平滑(Target Policy S..

2020-06-30 14:37:56 205

转载 深度强化学习训练调参方法

转载自 https://zhuanlan.zhihu.com/p/99901400为了保证DRL算法能够顺利收敛,policy性能达标并具有实用价值,结果有说服力且能复现,需要算法工作者在训练前、训练中和训练后提供全方位一条龙服务。我记得GANs刚火起来的时候,因为训练难度高,有人在GitHub上专门开了repository,总结来自学术界和工业界的最新训练经验,各种经过或未经验证的tricks被堆砌在一起,吸引了全世界AI爱好者的热烈讨论,可谓盛况空前。在玄学方面,DRL算法训练有得一拼。但毕竟在科研领

2020-06-20 09:10:46 1137 4

原创 人脸特征提取

一.实验内容实现PCA,Fisher,LBP三种特征提取方法,显示特征图像;并观察特征数据形式。本实验主要是需要学生理解三种特征提取方法的基本原理,会使用OpenCV相关接口函数完成人脸特征提取。二.实验步骤本实验可以使用给定的数据集完成特征提取与显示任务,数据集存放在以“data+名字首字母缩写后缀”为名字的文件夹中,在项目中,我们已经编写好了数据采集,图像读取与可视化部分,这里我们只需要重点学习PCA,Fisher与LBP特征提取的方法实现与结果输出方式,在文件Feature.py中,eigenf

2020-06-12 09:39:38 162

原创 人脸识别

一.实验内容使用opencv来进行特征提取过程,分别采用opencv的高级API和opencv的底层API进行人脸识别,由于我们要学习整个人脸识别的处理流程,所以这里以底层实现方法作为重点。在特征提取出来后,分别采用欧氏距离和SVM的方法进行人脸识别。二.实验步骤本实验的项目的主要文件包括Recognize_e.py(底层API实现),Recognize_h.py(高级API实现)底层API本实验最终的结果是要对于在识别范围内的人,如果出现在摄像头中,则可以识别出每个人的名字,并进行标注,所

2020-06-12 09:36:07 77

原创 人脸检测

一.实验内容使用opencv-python完成人脸检测实验,要求可以在被检测图像中,框选人脸所在位置二.实验步骤本实验对应的python文件为FaceDetection.py,它是进行人脸识别的第一步,由于使用OpenCV提供的接口,使得实现过程大大简化,其中设计HaarCascade人脸检测器的配制方法,基本步骤分为以下三步:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XIVjKmMQ-1591925725279)(/home/tina/.config/Typor

2020-06-12 09:35:51 53

原创 opencv人脸

这段时间在实习过程中做了很多很多基础的机器学习程序,其中自己用opencv底层实现了(特征脸,fisher,lbp)等最为古老基础的人脸识别程序,最近稍微研究了一下人脸识别领域的发展史,发现人脸识别领域并没有我想象的那样有一堆各种各样的定制化网络模型,大多数方法将注意力放到了损失函数的构建方面,而在看各种损失函数时偶然看到度量学习这个词,就在这里稍微总结一下下面内容来自https://blog.csdn.net/gdengden/article/details/827151621、度量(Metric.

2020-06-12 09:35:06 34

原创 2019-11-19 tensorflow安装方法 120956

tensorflow安装方法tensorflow分为CPU和GPU两个版本,各有优缺点CPU版本:优点是便于安装,适合初学者;缺点是不支持gpu运算。应用场景一般用于简单的深度学习实验GPU版本:优点是功能强大,包含有CPU版本;缺点是安装复杂,需要CUDA和CUDnn的支持,且需要版本对应。为了方便我们首先切换到root用户su root #切换到root用户前提:安装pythonpip install python3 #安装python3版本pip install python #安

2020-06-12 09:34:16 88

原创 LCS方法总结

Table 1:A summary of notedLCS algorithmsSystemYearFitnessLearning/credit assignmentRule repGACS-11978AccuracyEpochalTernary[P]LS-11980AccuracyImplicit CriticTernary[P]CS-1 (based)1982StrengthBucket BrigadeTernary[M]An

2020-06-11 14:38:20 123

转载 FLN

最近看了一些模糊神经网络。模糊系统的核心其实就是一个方程IF antecedent, THEN consequent.就是所谓的Rule-based System。最开始提出模糊系统是为了模拟人的reasoning过程,并且由于定义了Rule,就可以结合领域内的专家知识。antecedent可以有很多,consequent也可以有很多,都可以是模糊集合或者实数。神经网络或者说机器学习算法,都是从**数据中去归纳(Induction)数据中存在的pattern或者不同特征间的关系。**但是,模型不会保

2020-06-11 14:37:56 49

转载 机器学习各种优化方法

转载自https://www.cnblogs.com/callyblog/p/8299074.html这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。SGDSGD指stochastic gradient descent,即随机梯度下降。是梯度下降的batch版本。对于训练...

2019-12-06 11:58:14 57

转载 Pytorch技巧

写的不错的一篇文章 https://www.cnblogs.com/wj-1314/p/9830950.html

2019-12-05 14:41:50 31

原创 ubuntu用户知识+环境变量

ubuntu用户知识Linux 是个多用户多任务的分时操作系统,所有想要调用系统资源的用户都必须先向系统管理员申请一个账号,然后通过这个账号进入系统。用户的账号一方面能帮助系统管理员对使用系统的用户进行跟踪,控制他们对系统资源的访问;另一方面也能帮助用户组织文件,为用户提供安全性保护。每个账号都拥有一个唯一的用户名和用户密码。用户在登录时键入正确的用户名和密码后,才能进入系统和自己的主目录。...

2019-11-28 18:45:57 53

原创 ubuntu个人问题总结

ubuntu出现开机黑屏的情况解决方法:1.ctrl+alt+f1进入命令行界面(由于无法进入图形界面但可以进入命令行界面)2.sudo dpkg --configure -a来修复3.reboot

2019-11-19 09:54:52 106

原创 VAE

对于VAE精炼的讲解https://www.youtube.com/watch?v=9zKuYvjFFS8

2019-11-08 20:54:10 39

原创 python面试

1.list在CPython中,列表被实现为长度可变的数组。类似于C++中的vector2.dictCPython使用**伪随机探测(pseudo-random probing)的散列表(hash table)**作为字典的底层数据结构类似于C++中的mapPython中所有不可变的内置类型都是可哈希的。可变类型(如列表,字典和集合)就是不可哈希的,因此不能作为字典的键3.setC...

2019-11-03 16:17:02 45

原创 STL库总结

因为stl是自己平常经常使用库,但是从网上没有找到一个特别完整清楚的整理,所以准备自己整理一下STL库总结1.vector底层数据结构:数组,支持快速随机访问函数名功能vector()创建一个空的vectorvector(anothervector)通过复制构造一个vectorsize()向量中的元素个数front()返回首元素的引用...

2019-11-03 16:16:21 66

原创 ml疑难总结

这篇文章主要记录一下一直困扰着自己的一些机器学习基础问题1.线性模型和非线性模型、下面一段引用自知乎 https://zhuanlan.zhihu.com/p/37866896线性模型可以是用曲线拟合样本,但是分类的决策边界一定是直线的,例如 模型;区分是否为线性模型,主要是看一个乘法式子中自变量 前的系数 ,应该是说x只被一个影响,那么此模型为线性模型。或者判断决策边界是...

2019-10-29 16:15:24 32

原创 Pytorch书

前几天复现了insightface人脸识别的一个baseline(使用pytorch),就一发不可收拾,对于pytorch中所蕴含的机理十分感兴趣。所以准备在这里总结一下自己的pytorch的修炼过程昨天实验室恰好购买了一套pytorch的新书书的主要内容一.Pytorch简介 (基于Lua的Torch——>基于Python的Pytorch) 各种深度学习框架的对比Th...

2019-10-28 19:10:54 170

原创 高维组合特征的处理

来源自《百面机器学习》1 高维高阶组合特征为了提高对复杂关系的拟合能力,在特征工程中经常会把一阶离散特征两两组合,构成高阶组合特征。然而高阶矩阵的参数是一个很严重的问题例如对于一个m维和一个n维的特征组合,那么如果以logistics回归为例子,则参数参数w的维度为m*n,如果m,n很大的话,则难以进行计算。所以采用矩阵分解的方法,将m和n维的特征都转化维k维2.组合特征选择可以...

2019-10-27 20:04:59 633 1

原创 RNN

序列数据RNN是神经网络中的一种,它擅长对序列数据进行建模处理。例1:预测小球的运动方向如果只有一个状态的静态快照,只能进行随机预测但是,如果具有连续状态的快照,则有足够的信息来进行更好的预测,这里就是一种序列数据例2:音频数据音频是一种自然的序列,你可以将音频频谱图分成块并将其馈入RNN。例3:文本数据文本也是一种形式的序列,你可以将文本分成一系列字符或一系列单词。RNN...

2019-10-25 21:23:20 105

原创 人脸识别

1.实验目的:1.1 背景人脸识别已经在生活中快速的普及开来, 但是人脸识别技术在实际应用中遇到的一个广为人知的问题是它在不同人种的性能有差异。 如何快速的提升人脸识别系统在不同人种的性能, 是一个实用的人脸识别算法应该考虑的问题。1.2 实验目标本次作业目标是提高人脸识别模型在不同人种上面的性能。以人脸1:1 比对为场景, 需要同时优化人脸识别模型在不同人种上的性能,提高在低误识率情况下...

2019-10-25 12:44:57 331

原创 U盘安装Win10

这两天回家修整,恰逢家里电脑出现点问题,经过清灰和重复插拔内存条之后顺利解决<( ̄▽ ̄)/,奇思妙想想做个系统盘,于是买了硬盘盒后把原来笔记本的硬盘魔改win10系统添加快速启动功能,默认都是UEFI引导和GPT硬盘,传统的引导方式为BIOS(lagace)和MBR硬盘,UEFI要和GPT对应同理BIOS。如果用BIOS开启UEFI,而磁盘分区格式为MBR则无法安装。而且 磁盘转成G...

2019-10-20 22:47:25 23

原创 EM算法+混合高斯模型

在补ml基础的时候,突然感觉自己对于EM算法有些遗忘,所以在这里再回忆一下,顺便再学一下老师提过好多次的混合高斯模型EM算法简单解释,分为E步estimation和M步maxmization两步这里直接用两个例子记性解释例子来源知乎-人人都懂EM算法例子1...

2019-10-18 15:51:49 32

原创 NLP-word2vec

前几天实验室开了CS224课程,由于自己原来做过一个多文本分类任务的项目(未使用语义知识,采用传统的分词(jieba),去停用词,tf-idf(基于统计的语言模型)),而在预推免期间,联系的某个老师曾让读过Bert那篇论文,自己也首次有机会跟nlp有了更深层次的交流,通过读那篇论文,自己了解了语言模型的概念,并了解了预训练模型,上游下游任务的概念,以及Bert与Elmo等方法的区别,和Bert所...

2019-10-16 22:47:17 59

原创 个人常用linux命令

个人常用linux命令version:ubuntu v1.0grep 十分常用的查找抓取工具,常常与别的命令配合食用-n 显示行ps -ax|lessps-u 用户ps -auxtop 查看每个进程各个资源占用情况watch -n| -d nvidia-smi 不停的查看显卡使用情况top->htop->glancesag是一种强大的...

2019-10-16 17:50:24 65

原创 多人种人脸识别(二)

由于自己完全无法适应CSDN的富文本编辑模式ε=ε=ε=┏(゜ロ゜;)┛,实在是用不来,所以“多人种人脸识别“的第二部分转战Markdown编辑器PyTorch的关键应用BN层的使用BN层的优点主要有以下几点:加快训练速度,这样我们就可以使用较大的学习率来训练网络提高网络的泛化能力,这样就可以减少dropout和正则化的使用BN层本质上是一个归一化网络层,可以替代局部响应归一化层...

2019-10-16 12:39:56 260 1

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除